我正在尝试创建一个固定宽度的,包含多个图层的大型平面文件,但是处理似乎非常缓慢,这很可能是因为我要遍历每一行。 就上下文而言,这是用于传输保险单信息。
层次结构如下:
-Policy row
--Property on policy
---Coverage on property
--Property on policy
---Coverage on property
--Owner on policy
--Owner on policy
--Owner on policy
当前,我将四种记录类型加载到单独的数据帧中,然后通过基于父记录的ID拉出它们并将它们写入文件,对每种类型进行for循环。我希望能进行某种层次的dataFrame合并,这样不会强制我每次想要记录时都扫描文件。
import re
import pandas as pd
import math
def MakeNumeric(instring):
output = re.sub('[^0-9]', '', str(instring))
return str(output)
def Pad(instring, padchar, length, align):
if instring is None: # Takes care of NULL values
instring = ''
instring = str(instring).upper()
instring = instring.replace(',', '').replace('\n', '').replace('\r', '')
instring = instring[:length]
if align == 'L':
output = instring + (padchar * (length - len(instring)))
elif align == 'R':
output = (padchar * (length - len(instring))) + instring
else:
output = instring
return output
def FileCreation():
POLR = pd.read_parquet(r'POLR.parquet')
PRP1 = pd.read_parquet(r'PRP1.parquet')
PROP = pd.read_parquet(r'PROP.parquet')
SUBJ = pd.read_parquet(r'SUBJ.parquet')
rownum = 1
totalrownum = 1
POLRCt = 0
size = 900000
POLR = [POLR.loc[i:i + size - 1, :] for i in range(0, len(POLR), size)]
FileCt = 0
print('Predicted File Count: ' + str(math.ceil(len(POLR[0])/ size)) )
for df in POLR:
FileCt += 1
filename = r'OutputFile.' + Pad(FileCt, '0', 2, 'R')
with open(filename, 'a+') as outfile:
for i, row in df.iterrows():
row[0] = Pad(rownum, '0', 9, 'R')
row[1] = Pad(row[1], ' ', 4, 'L')
row[2] = Pad(row[2], '0', 5, 'R')
# I do this for all 50 columns
outfile.write((','.join(row[:51])).replace(',', '') + '\n')
rownum += 1
totalrownum += 1
for i2, row2 in PROP[PROP.ID == row[51]].iterrows():
row2[0] = Pad(rownum, '0', 9, 'R')
row2[1] = Pad(row2[1], ' ', 4, 'L')
row2[2] = Pad(row2[2], '0', 5, 'R')
# I do this for all 105 columns
outfile.write((','.join(row2[:106])).replace(',', '') + '\n')
rownum += 1
totalrownum += 1
for i3, row3 in PRP1[(PRP1['id'] == row2['ID']) & (PRP1['VNum'] == row2['vnum'])].iterrows():
row3[0] = Pad(rownum, '0', 9, 'R')
row3[1] = Pad(row3[1], ' ', 4, 'L')
row3[2] = Pad(row3[2], '0', 5, 'R')
# I do this for all 72 columns
outfile.write((','.join(row3[:73])).replace(',', '') + '\n')
rownum += 1
totalrownum += 1
for i2, row2 in SUBJ[SUBJ['id'] == row['id']].iterrows():
row2[0] = Pad(rownum, '0', 9, 'R')
row2[1] = Pad(row2[1], ' ', 4, 'L')
row2[2] = Pad(row2[2], '0', 5, 'R')
# I do this for all 24 columns
outfile.write((','.join(row2[:25])).replace(',', '') + '\n')
rownum += 1
totalrownum += 1
POLRCt += 1
print('File {} of {} '.format(str(FileCt),str(len(POLR)) ) + str((POLRCt - 1) / len(df.index) * 100) + '% Finished\r')
rownum += 1
rownum = 1
POLRCt = 1
我实质上是在寻找不需要花费几天时间即可创建2700万记录文件的脚本。
答案 0 :(得分:0)
我最终为每个记录级别填充了临时表,并创建了键,然后将它们插入到永久的暂存表中并为键分配了聚簇索引。
然后,我在使用OFFSET
和FETCH NEXT %d ROWS ONLY
减小内存大小时查询了结果。然后,我使用多处理库为CPU上的每个线程分配工作量。
最终,这些因素的组合将运行时间减少到最初发布此问题时的运行时间的大约20%。