我的文件非常大。每个文件将近2GB。因此,我想并行运行多个文件。我可以这样做,因为所有文件的格式都相似,因此可以并行读取文件。我知道我应该使用多处理库,但是我真的很困惑如何在我的代码中使用它。
我用于读取文件的代码是:
def file_reading(file,num_of_sample,segsites,positions,snp_matrix):
with open(file,buffering=2000009999) as f:
###I read file here. I am not putting that code here.
try:
assert len(snp_matrix) == len(positions)
return positions,snp_matrix ## return statement
except:
print('length of snp matrix and length of position vector not the same.')
sys.exit(1)
我的主要功能是:
if __name__ == "__main__":
segsites = []
positions = []
snp_matrix = []
path_to_directory = '/dataset/example/'
extension = '*.msOut'
num_of_samples = 162
filename = glob.glob(path_to_directory+extension)
###How can I use multiprocessing with function file_reading
number_of_workers = 10
x,y,z = [],[],[]
array_of_number_tuple = [(filename[file], segsites,positions,snp_matrix) for file in range(len(filename))]
with multiprocessing.Pool(number_of_workers) as p:
pos,snp = p.map(file_reading,array_of_number_tuple)
x.extend(pos)
y.extend(snp)
因此我对该函数的输入如下:
该函数最后返回位置列表和snp_matrix列表。在参数为列表和整数的情况下,如何使用多重处理?我使用多重处理的方式给我以下错误:
TypeError:file_reading()缺少3个必需的位置参数:“ segsites”,“ positions”和“ snp_matrix”
答案 0 :(得分:1)
传递到Pool.map的列表中的元素不会自动解压缩。通常,“ file_reading”函数中只能有一个参数。
当然,该参数可以是一个元组,因此自己解压缩是没有问题的:
def file_reading(args):
file, num_of_sample, segsites, positions, snp_matrix = args
with open(file,buffering=2000009999) as f:
###I read file here. I am not putting that code here.
try:
assert len(snp_matrix) == len(positions)
return positions,snp_matrix ## return statement
except:
print('length of snp matrix and length of position vector not the same.')
sys.exit(1)
if __name__ == "__main__":
segsites = []
positions = []
snp_matrix = []
path_to_directory = '/dataset/example/'
extension = '*.msOut'
num_of_samples = 162
filename = glob.glob(path_to_directory+extension)
number_of_workers = 10
x,y,z = [],[],[]
array_of_number_tuple = [(filename[file], num_of_samples, segsites,positions,snp_matrix) for file in range(len(filename))]
with multiprocessing.Pool(number_of_workers) as p:
pos,snp = p.map(file_reading,array_of_number_tuple)
x.extend(pos)
y.extend(snp)