我正在开发用于对良性和恶意软件apk进行分类的神经网络模型。
我尝试使用tf.squeeze()
函数,但是使用它后我无法使用优化器
def neural_network_model(data):
l1 = tf.add(tf.matmul(data,hidden_1_layer['weight']), hidden_1_layer['bias'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1,hidden_2_layer['weight']), hidden_2_layer['bias'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2,hidden_3_layer['weight']), hidden_3_layer['bias'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3,output_layer['weight']) + output_layer['bias']
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels= y) )
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
pred
和y
的形状必须相同,但是通过运行代码,我将pred
的形状更改为(3799,2)
,而{{1}的形状}是y
。
答案 0 :(得分:0)
我的评论:
tf.nn.sparse_softmax_cross_entropy_with_logits()
而不将其转换为一键编码的表示形式。否则,tf.nn.softmax_cross_entropy_with_logits()
仅接受一键编码的标签。numpy
的值作为损失函数的输入(或作为feed_dict
中除session.run()
以外的其他任何东西的输入)的传递。请改用占位符。以下是说明如何使用占位符和馈送numpy数据数组的示例。
import numpy as np
import tensorflow as tf
# Dummy data with 3 classes for illustration
n_classes =3
x_train = np.random.normal(size=(3799, 2)) # 3799 samples of size (2, ) each
y_train = np.random.randint(low=0, high=n_classes, size=(1, 3799))
# Define placeholders here
x = tf.placeholder(tf.float32, shape=(None, 2))
y = tf.placeholder(tf.int32, shape=(1, None))
# Define your network here
w = tf.Variable(tf.random_normal(shape=[2, n_classes]), dtype=tf.float32)
b = tf.Variable(tf.zeros([n_classes, ]), dtype=tf.float32)
logits = tf.matmul(x, w) + b
labels = tf.squeeze(y)
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
labels=labels)
cost = tf.reduce_mean(xentropy)
train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
# Training
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
cost_val = sess.run(cost, feed_dict={x:x_train, y:y_train})
print(cost_val) # 1.8630761
sess.run(train_op, feed_dict={x:x_train, y:y_train}) # optimizer step
cost_val = sess.run(cost, feed_dict={x:x_train, y:y_train})
print(cost_val) # 1.8619089