我正在处理一个大型数据集,我需要将其转换为特定格式以进行进一步处理。我正在这方面寻求建议。
样本输入:
A = [0.99 -0.99
1 -1
0.55 -0.55]
示例输出:
val(:,:,1,1)=0.99
val(:,:,2,1)=-0.99
val(:,:,1,2)=1
val(:,:,2,2)=-1
val(:,:,1,3)=0.55
val(:,:,2,3)=-0.55
在此过程中,我在MATLAB R2018b的CNN工具箱中找到了一个代码
function dummifiedOut = dummify(categoricalIn)
% iDummify Convert a categorical input into a dummified output.
%
% dummifiedOut(1,1,i,j)=1 if observation j is in class i, and zero
% otherwise. Therefore, dummifiedOut will be of size [1, 1, K, N],
% where K is the number of categories and N is the number of
% observation in categoricalIn.
% Copyright 2015-2016 The MathWorks, Inc.
numObservations = numel(categoricalIn);
numCategories = numel(categories(categoricalIn));
dummifiedSize = [1, 1, numCategories, numObservations];
dummifiedOut = zeros(dummifiedSize);
categoricalIn = iMakeHorizontal( categoricalIn );
idx = sub2ind(dummifiedSize(3:4), int32(categoricalIn), 1:numObservations);
dummifiedOut(idx) = 1;
end
function vec = iMakeHorizontal( vec )
vec = reshape( vec, 1, numel( vec ) );
end
我们可以修改此代码块以产生示例输出吗?
答案 0 :(得分:1)
要么做rinkert suggested,要么直接使用permute
:
>> val = permute(A, [4,3,2,1])
val(:,:,1,1) =
0.9900
val(:,:,2,1) =
-0.9900
val(:,:,1,2) =
1
val(:,:,2,2) =
-1
val(:,:,1,3) =
0.5500
val(:,:,2,3) =
-0.5500
请注意,您发布的函数需要 categorical
数据,而您只有一个简单的double
数组。如果您坚持“适应”现有的dummify
,则可以执行以下操作:
function dummifiedOut = dummify(categoricalIn)
dummifiedOut = zeros([1,1,size(categoricalIn)]);
dummifiedOut(:) = categoricalIn;
end
(...虽然,恕我直言,这没有什么意义。)