尝试训练Tensorflow模型时,即使我将所有列类型从int64转换为string /,也会弹出错误消息,提示“ 不支持将字符串转换为float ”。对象。
我的数据框列的内容是键(因此,最初是数字),它们指向一个类值,如以下所示:https://pastebin.com/ui7dex3A
使用Jupyter Notebook。
==============
这是我的数据集:
这是我对数据集进行的转换以转换为字符串:
然后我用对象列创建了tf.feature_column.categorical_column_with_hash_bucket,并使用int64列创建了tf.feature_column.numeric_column
一些重要版本(我正在使用 tfdl_env 文件): -numpy = 1.13.1 = py35_0 -tensorflow == 1.3.0 -tensorflow-张量板== 0.1.7 -python = 3.5.4 = 0
==============
创建火车组的代码:
x_data = dataInitial.drop('HUMANDMG',axis=1)
y_labels = dataInitial['HUMANDMG']
X_train, X_test, y_train, y_test = train_test_split(x_data,y_labels,test_size=0.3,random_state=101)
创建列的代码:
frstham = tf.feature_column.categorical_column_with_hash_bucket("FRSTHARM", hash_bucket_size=1000)
locfsthrm = tf.feature_column.categorical_column_with_hash_bucket("LOCFSTHRM", hash_bucket_size=1000)
crcomnr = tf.feature_column.categorical_column_with_hash_bucket("CRCOMNNR", hash_bucket_size=1000)
majcse = tf.feature_column.categorical_column_with_hash_bucket("MAJCSE", hash_bucket_size=1000)
drugalc = tf.feature_column.categorical_column_with_hash_bucket("DRUGALC", hash_bucket_size=1000)
ecntcrc = tf.feature_column.categorical_column_with_hash_bucket("ECNTCRC", hash_bucket_size=1000)
light = tf.feature_column.categorical_column_with_hash_bucket("LIGHT", hash_bucket_size=1000)
csrfcnd = tf.feature_column.categorical_column_with_hash_bucket("CSRFCND", hash_bucket_size=1000)
weather = tf.feature_column.categorical_column_with_hash_bucket("WEATHER", hash_bucket_size=1000)
rcntcrc = tf.feature_column.categorical_column_with_hash_bucket("RCNTCRC", hash_bucket_size=1000)
rdtyp = tf.feature_column.categorical_column_with_hash_bucket("RDTYP", hash_bucket_size=1000)
paved = tf.feature_column.categorical_column_with_hash_bucket("PAVED", hash_bucket_size=1000)
csev = tf.feature_column.categorical_column_with_hash_bucket("CSEV", hash_bucket_size=1000)
crashdatehour = tf.feature_column.categorical_column_with_hash_bucket("CRASH_DATEHOUR", hash_bucket_size=1000)
vehicles = tf.feature_column.numeric_column("VEHICLES")
toccupants = tf.feature_column.numeric_column("TOCCUPANTS")
用于创建输入函数和模型的代码:
feat_cols = [frstham,locfsthrm,crcomnr,majcse,drugalc,ecntcrc,light,csrfcnd,weather,rcntcrc,rdtyp,paved,
csev,crashdatehour,vehicles,toccupants]
input_func=tf.estimator.inputs.pandas_input_fn(x=X_train,y=y_train,batch_size=1000,num_epochs=None,shuffle=True)
model = tf.estimator.LinearClassifier(feature_columns=feat_cols)
model.train(input_fn=input_func,steps=5000)
这是我收到的错误日志,而不是经过良好的培训:
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Error reported to Coordinator: <class 'SystemError'>, <built-in function TF_Run> returned a result with an error set
---------------------------------------------------------------------------
UnimplementedError Traceback (most recent call last)
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1326 try:
-> 1327 return fn(*args)
1328 except errors.OpError as e:
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1305 feed_dict, fetch_list, target_list,
-> 1306 status, run_metadata)
1307
~/anaconda2/envs/tfdeeplearning/lib/python3.5/contextlib.py in __exit__(self, type, value, traceback)
65 try:
---> 66 next(self.gen)
67 except StopIteration:
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/framework/errors_impl.py in raise_exception_on_not_ok_status()
465 compat.as_text(pywrap_tensorflow.TF_Message(status)),
--> 466 pywrap_tensorflow.TF_GetCode(status))
467 finally:
UnimplementedError: Cast string to float is not supported
[[Node: linear/head/ToFloat = Cast[DstT=DT_FLOAT, SrcT=DT_STRING, _device="/job:localhost/replica:0/task:0/cpu:0"](linear/head/labels)]]
During handling of the above exception, another exception occurred:
UnimplementedError Traceback (most recent call last)
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py in _train_model(self, input_fn, hooks)
685 while not mon_sess.should_stop():
--> 686 _, loss = mon_sess.run([estimator_spec.train_op, estimator_spec.loss])
687 return loss
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/training/monitored_session.py in run(self, fetches, feed_dict, options, run_metadata)
517 options=options,
--> 518 run_metadata=run_metadata)
519
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/training/monitored_session.py in run(self, fetches, feed_dict, options, run_metadata)
861 options=options,
--> 862 run_metadata=run_metadata)
863 except _PREEMPTION_ERRORS as e:
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/training/monitored_session.py in run(self, *args, **kwargs)
817 def run(self, *args, **kwargs):
--> 818 return self._sess.run(*args, **kwargs)
819
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/training/monitored_session.py in run(self, fetches, feed_dict, options, run_metadata)
971 options=options,
--> 972 run_metadata=run_metadata)
973
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/training/monitored_session.py in run(self, *args, **kwargs)
817 def run(self, *args, **kwargs):
--> 818 return self._sess.run(*args, **kwargs)
819
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
894 result = self._run(None, fetches, feed_dict, options_ptr,
--> 895 run_metadata_ptr)
896 if run_metadata:
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
1123 results = self._do_run(handle, final_targets, final_fetches,
-> 1124 feed_dict_tensor, options, run_metadata)
1125 else:
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1320 return self._do_call(_run_fn, self._session, feeds, fetches, targets,
-> 1321 options, run_metadata)
1322 else:
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1339 pass
-> 1340 raise type(e)(node_def, op, message)
1341
UnimplementedError: Cast string to float is not supported
[[Node: linear/head/ToFloat = Cast[DstT=DT_FLOAT, SrcT=DT_STRING, _device="/job:localhost/replica:0/task:0/cpu:0"](linear/head/labels)]]
Caused by op 'linear/head/ToFloat', defined at:
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel_launcher.py", line 16, in <module>
app.launch_new_instance()
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/traitlets/config/application.py", line 658, in launch_instance
app.start()
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/kernelapp.py", line 477, in start
ioloop.IOLoop.instance().start()
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/zmq/eventloop/ioloop.py", line 177, in start
super(ZMQIOLoop, self).start()
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tornado/ioloop.py", line 888, in start
handler_func(fd_obj, events)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tornado/stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py", line 440, in _handle_events
self._handle_recv()
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py", line 472, in _handle_recv
self._run_callback(callback, msg)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py", line 414, in _run_callback
callback(*args, **kwargs)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tornado/stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/kernelbase.py", line 235, in dispatch_shell
handler(stream, idents, msg)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/zmqshell.py", line 533, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/IPython/core/interactiveshell.py", line 2698, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/IPython/core/interactiveshell.py", line 2808, in run_ast_nodes
if self.run_code(code, result):
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/IPython/core/interactiveshell.py", line 2862, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-420-ff68dadd2b4b>", line 1, in <module>
model.train(input_fn=input_func,steps=5000)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py", line 241, in train
loss = self._train_model(input_fn=input_fn, hooks=hooks)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py", line 630, in _train_model
model_fn_lib.ModeKeys.TRAIN)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py", line 615, in _call_model_fn
model_fn_results = self._model_fn(features=features, **kwargs)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/estimator/canned/linear.py", line 222, in _model_fn
config=config)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/estimator/canned/linear.py", line 102, in _linear_model_fn
logits=logits)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/estimator/canned/head.py", line 632, in create_estimator_spec
labels = math_ops.to_float(labels)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/ops/math_ops.py", line 765, in to_float
return cast(x, dtypes.float32, name=name)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/ops/math_ops.py", line 716, in cast
return gen_math_ops.cast(x, base_type, name=name)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/ops/gen_math_ops.py", line 450, in cast
result = _op_def_lib.apply_op("Cast", x=x, DstT=DstT, name=name)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/framework/op_def_library.py", line 767, in apply_op
op_def=op_def)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 2630, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/Users/brunoteixeira/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 1204, in __init__
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access
UnimplementedError (see above for traceback): Cast string to float is not supported
[[Node: linear/head/ToFloat = Cast[DstT=DT_FLOAT, SrcT=DT_STRING, _device="/job:localhost/replica:0/task:0/cpu:0"](linear/head/labels)]]
During handling of the above exception, another exception occurred:
SystemError Traceback (most recent call last)
<ipython-input-420-ff68dadd2b4b> in <module>()
----> 1 model.train(input_fn=input_func,steps=5000)
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py in train(self, input_fn, hooks, steps, max_steps)
239 hooks.append(training.StopAtStepHook(steps, max_steps))
240
--> 241 loss = self._train_model(input_fn=input_fn, hooks=hooks)
242 logging.info('Loss for final step: %s.', loss)
243 return self
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py in _train_model(self, input_fn, hooks)
684 loss = None
685 while not mon_sess.should_stop():
--> 686 _, loss = mon_sess.run([estimator_spec.train_op, estimator_spec.loss])
687 return loss
688
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/training/monitored_session.py in __exit__(self, exception_type, exception_value, traceback)
532 if exception_type in [errors.OutOfRangeError, StopIteration]:
533 exception_type = None
--> 534 self._close_internal(exception_type)
535 # __exit__ should return True to suppress an exception.
536 return exception_type is None
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/training/monitored_session.py in _close_internal(self, exception_type)
567 finally:
568 try:
--> 569 self._sess.close()
570 finally:
571 self._sess = None
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/training/monitored_session.py in close(self)
809 if self._sess:
810 try:
--> 811 self._sess.close()
812 except _PREEMPTION_ERRORS:
813 pass
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/training/monitored_session.py in close(self)
906 self._coord.join(
907 stop_grace_period_secs=self._stop_grace_period_secs,
--> 908 ignore_live_threads=True)
909 finally:
910 try:
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/training/coordinator.py in join(self, threads, stop_grace_period_secs, ignore_live_threads)
387 self._registered_threads = set()
388 if self._exc_info_to_raise:
--> 389 six.reraise(*self._exc_info_to_raise)
390 elif stragglers:
391 if ignore_live_threads:
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/six.py in reraise(tp, value, tb)
684 if value.__traceback__ is not tb:
685 raise value.with_traceback(tb)
--> 686 raise value
687
688 else:
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/estimator/inputs/queues/feeding_queue_runner.py in _run(self, sess, enqueue_op, feed_fn, coord)
92 try:
93 feed_dict = None if feed_fn is None else feed_fn()
---> 94 sess.run(enqueue_op, feed_dict=feed_dict)
95 except (errors.OutOfRangeError, errors.CancelledError):
96 # This exception indicates that a queue was closed.
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
893 try:
894 result = self._run(None, fetches, feed_dict, options_ptr,
--> 895 run_metadata_ptr)
896 if run_metadata:
897 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
1122 if final_fetches or final_targets or (handle and feed_dict_tensor):
1123 results = self._do_run(handle, final_targets, final_fetches,
-> 1124 feed_dict_tensor, options, run_metadata)
1125 else:
1126 results = []
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1319 if handle is None:
1320 return self._do_call(_run_fn, self._session, feeds, fetches, targets,
-> 1321 options, run_metadata)
1322 else:
1323 return self._do_call(_prun_fn, self._session, handle, feeds, fetches)
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1325 def _do_call(self, fn, *args):
1326 try:
-> 1327 return fn(*args)
1328 except errors.OpError as e:
1329 message = compat.as_text(e.message)
~/anaconda2/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1304 return tf_session.TF_Run(session, options,
1305 feed_dict, fetch_list, target_list,
-> 1306 status, run_metadata)
1307
1308 def _prun_fn(session, handle, feed_dict, fetch_list):
SystemError: <built-in function TF_Run> returned a result with an error set
有什么想法吗?谢谢!