我的数据迭代器当前在CPU上运行,因为不推荐使用device=0
参数。但是我需要它与模型的其余部分一起在GPU上运行。
这是我的代码:
pad_idx = TGT.vocab.stoi["<blank>"]
model = make_model(len(SRC.vocab), len(TGT.vocab), N=6)
model = model.to(device)
criterion = LabelSmoothing(size=len(TGT.vocab), padding_idx=pad_idx, smoothing=0.1)
criterion = criterion.to(device)
BATCH_SIZE = 12000
train_iter = MyIterator(train, device, batch_size=BATCH_SIZE,
repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)),
batch_size_fn=batch_size_fn, train=True)
valid_iter = MyIterator(val, device, batch_size=BATCH_SIZE,
repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)),
batch_size_fn=batch_size_fn, train=False)
#model_par = nn.DataParallel(model, device_ids=devices)
上面的代码给出此错误:
The `device` argument should be set by using `torch.device` or passing a string as an argument. This behavior will be deprecated soon and currently defaults to cpu.
The `device` argument should be set by using `torch.device` or passing a string as an argument. This behavior will be deprecated soon and currently defaults to cpu.
我尝试将'cuda'
而不是device=0
作为参数传递,但出现此错误:
<ipython-input-50-da3b1f7ed907> in <module>()
10 train_iter = MyIterator(train, 'cuda', batch_size=BATCH_SIZE,
11 repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)),
---> 12 batch_size_fn=batch_size_fn, train=True)
13 valid_iter = MyIterator(val, 'cuda', batch_size=BATCH_SIZE,
14 repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)),
TypeError: __init__() got multiple values for argument 'batch_size'
我也尝试传递device
作为参数。设备被定义为device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
但是收到与上述相同的错误。
任何建议将不胜感激,谢谢。
答案 0 :(得分:1)
我当前的pytorch版本1.0.1
和以前的版本0.4
与string和torch.device
一起使用效果很好:
import torch
x = torch.tensor(1)
print(x.to('cuda:0')) # no problem
print(x.to(torch.device('cuda:0')) # no problem as well
答案 1 :(得分:0)
pad_idx = TGT.vocab.stoi["<blank>"]
model = make_model(len(SRC.vocab), len(TGT.vocab), N=6)
model = model.to(device)
criterion = LabelSmoothing(size=len(TGT.vocab), padding_idx=pad_idx, smoothing=0.1)
criterion = criterion.to(device)
BATCH_SIZE = 12000
train_iter = MyIterator(train, batch_size=BATCH_SIZE, device = torch.device('cuda'),
repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)),
batch_size_fn=batch_size_fn, train=True)
valid_iter = MyIterator(val, batch_size=BATCH_SIZE, device = torch.device('cuda'),
repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)),
batch_size_fn=batch_size_fn, train=False)
经过反复试验,我设法将device
设置为device = torch.device('cuda')
而不是device=0