我对python还是很陌生,并且已经阅读了很多关于该主题的SO问题,但是这些问题都不能满足我的需求。
我最终得到一个ndarray:
[[1, 2, 3]
[4, 5, 6]]
现在,我想为每个元素(例如[1, 2, 3]
)使用专门针对该元素的量身定制的填充。当然,我可以在for循环中执行此操作,并将每个结果附加到新的ndarray中,但是没有一种更快,更干净的方法可以一次将其应用于整个ndarray吗?
我想它可以像这样工作:
myArray = [[1, 2, 3]
[4, 5, 6]]
paddings = [(1, 2),
(2, 1)]
myArray = np.pad(myArray, paddings, 'constant')
当然,这只是输出:
[[0 0 0 0 0 0 0 0 0]
[0 0 1 2 3 0 0 0 0]
[0 0 3 4 5 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]]
这不是我所需要的。目标结果将是:
[[0 1 2 3 0 0]
[0 0 4 5 6 0]]
如何使用numpy
实现这一目标?
答案 0 :(得分:1)
这里是一个基于循环的解决方案,但根据输入数组和填充的尺寸创建了一个零数组。注释中的解释:
In [192]: myArray
Out[192]:
array([[1, 2, 3],
[4, 5, 6]])
In [193]: paddings
Out[193]:
array([[1, 2],
[2, 1]])
# calculate desired shape; needed for initializing `padded_arr`
In [194]: target_shape = (myArray.shape[0], myArray.shape[1] + paddings.shape[1] + 1)
In [195]: padded_arr = np.zeros(target_shape, dtype=np.int32)
In [196]: padded_arr
Out[196]:
array([[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]], dtype=int32)
此后,我们可以基于for
的值,使用myArray
循环来填充paddings
的序列:
In [199]: for idx in range(paddings.shape[0]):
...: padded_arr[idx, paddings[idx, 0]:-paddings[idx, 1]] = myArray[idx]
...:
In [200]: padded_arr
Out[200]:
array([[0, 1, 2, 3, 0, 0],
[0, 0, 4, 5, 6, 0]], dtype=int32)
我们之所以采用基于循环的解决方案,是因为numpy.lib.pad()
尚不支持这种填充,即使它已经提供了所有可用的附加模式和关键字参数。