Tensorflow在训练时给出以下错误

时间:2019-04-27 02:52:19

标签: tensorflow machine-learning

tensorflow模型执行程序文件:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf
import os
import json
import argparse
from tensorflow.python.platform import tf_logging
import logging as _logging
import sys as _sys

# IMAGE_SIZE = 256
# NUM_CHANNELS = 1
# PIXEL_DEPTH = 255
# NUM_LABELS = 2
# # TRAIN_SIZE = train_labels.shape[0]
# # VALIDATION_SIZE = test_labels.shape[0]  # Size of the validation set.

# FILTER_SIZE = 5
# FILTER_1 = 20
# FILTER_2 = 50
# HIDDEN_NUM = 100
# LEARNING_RATE = 0.01

# SEED = 66478  # Set to None for random seed.
# BATCH_SIZE = 5
# NUM_EPOCHS = 1 # set to be 1 for quick publish
# EVAL_BATCH_SIZE = 20
# EVAL_FREQUENCY = 20  # Number of steps between evaluations.
activation = tf.nn.relu


def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1, dtype=tf.float64)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape, dtype=tf.float64)
    return tf.Variable(initial)

def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')

def cnn_model_fn(features, labels, mode):
    """Model function for CNN."""
    # Input Layer
    # DICOM images are 256x256 pixels, and have one color channel
#     print(features["x"])
    print('Mohammed')
    input_layer = tf.reshape(features, [-1, 256, 256, 1])
    print(input_layer)

    # Convolutional Layer #1
    # Computes 32 features using a 5x5 filter with ReLU activation.
    # Padding is added to preserve width and height.
    # Input Tensor Shape: [batch_size, 256, 256, 1]
    # Output Tensor Shape: [batch_size, 256, 256, 5]
    conv1 = tf.layers.conv2d(
        inputs=input_layer,
        filters=5,
        kernel_size=[5, 5],
        padding="same",
        activation=tf.nn.relu)

    # Pooling Layer #1
    # First max pooling layer with a 2x2 filter and stride of 2
    # Input Tensor Shape: [batch_size, 256, 256, 5]
    # Output Tensor Shape: [batch_size, 128, 128, 5]
    pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)

    # Convolutional Layer #2
    # Computes 64 features using a 5x5 filter.
    # Padding is added to preserve width and height.
    # Input Tensor Shape: [batch_size, 128, 128, 5]
    # Output Tensor Shape: [batch_size, 128, 128, 10]
    conv2 = tf.layers.conv2d(
        inputs=pool1,
        filters=10,
        kernel_size=[5, 5],
        padding="same",
        activation=tf.nn.relu)

    # Pooling Layer #2
    # Second max pooling layer with a 2x2 filter and stride of 2
    # Input Tensor Shape: [batch_size, 128, 128, 10]
    # Output Tensor Shape: [batch_size, 64, 64, 10]
    pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)

    # Flatten tensor into a batch of vectors
    # Input Tensor Shape: [batch_size, 64, 64, 10]
    # Output Tensor Shape: [batch_size, 64 * 64 * 10]
    pool2_flat = tf.reshape(pool2, [-1, 64 * 64 * 10])


    # Dense Layer
    # Densely connected layer with 1024 neurons
    # Input Tensor Shape: [batch_size, 64 * 64 * 10]
    # Output Tensor Shape: [batch_size, 1024]
    dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)

    # Add dropout operation; 0.6 probability that element will be kept
    dropout = tf.layers.dropout(
        inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)

    # Logits layer
    # Input Tensor Shape: [batch_size, 1024]
    # Output Tensor Shape: [batch_size, 10]
    logits = tf.layers.dense(inputs=dropout, units=10)

    predictions = {
        # Generate predictions (for PREDICT and EVAL mode)
        "classes": tf.argmax(input=logits, axis=1),
        # Add `softmax_tensor` to the graph. It is used for PREDICT and by the
        # `logging_hook`.
        "probabilities": tf.nn.softmax(logits, name="softmax_tensor")
    }
    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

    # Calculate Loss (for both TRAIN and EVAL modes)
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)

    # Configure the Training Op (for TRAIN mode)
    if mode == tf.estimator.ModeKeys.TRAIN:
        data_optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
        train_op = data_optimizer.minimize(loss=loss,global_step=tf.train.get_global_step())
        return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)

    # Add evaluation metrics (for EVAL mode)
    eval_metric_ops = {
        "accuracy": tf.metrics.accuracy(
            labels=labels, predictions=predictions["classes"])}
    return tf.estimator.EstimatorSpec(
        mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)

def _load_training_data(base_dir):
    x_train = np.load(os.path.join(base_dir, 'train_data.npy'))
    y_train = np.load(os.path.join(base_dir, 'train_labels.npy'))
    return x_train, y_train

def _load_testing_data(base_dir):
    x_test = np.load(os.path.join(base_dir, 'eval_data.npy'))
    y_test = np.load(os.path.join(base_dir, 'eval_labels.npy'))
    return x_test, y_test

def _parse_args():

    parser = argparse.ArgumentParser()

    # Data, model, and output directories
    # model_dir is always passed in from SageMaker. By default this is a S3 path under the default bucket.
    parser.add_argument('--model_dir', type=str)
    parser.add_argument('--sm-model-dir', type=str, default=os.environ.get('SM_MODEL_DIR'))
    parser.add_argument('--train', type=str, default=os.environ.get('SM_CHANNEL_TRAINING'))
    parser.add_argument('--hosts', type=list, default=json.loads(os.environ.get('SM_HOSTS')))
    parser.add_argument('--current-host', type=str, default=os.environ.get('SM_CURRENT_HOST'))

    return parser.parse_known_args()

def serving_input_fn():
    inputs = {'x': tf.placeholder(tf.float32, [None, 65536])}
    return tf.estimator.export.ServingInputReceiver(inputs, inputs)

if __name__ == "__main__":
    args, unknown = _parse_args()

    train_data, train_labels = _load_training_data(args.train)
    eval_data, eval_labels = _load_testing_data(args.train)

#     train_labels = tf.convert_to_tensor(train_labels)
#     eval_labels = tf.convert_to_tensor(eval_labels)
#     print(args.model_dir)

    # Create the Estimator
    mnist_classifier = tf.estimator.Estimator(
        model_fn=cnn_model_fn, model_dir=args.model_dir)

    # Set up logging for predictions
    # Log the values in the "Softmax" tensor with label "probabilities"
    tensors_to_log = {"probabilities": "softmax_tensor"}
    logging_hook = tf.train.LoggingTensorHook(
        tensors=tensors_to_log, every_n_iter=50)

#     print({"x": train_data})
#     print({"x": eval_data})
    # Train the model
    train_input_fn = tf.estimator.inputs.numpy_input_fn(
        x=train_data,
        y=train_labels,
        batch_size=2,
        num_epochs=None,
        shuffle=True)

    # Evaluate the model and print results
    eval_input_fn = tf.estimator.inputs.numpy_input_fn(
        x=eval_data,
        y=eval_labels,
        num_epochs=1,
        shuffle=False)

    train_spec = tf.estimator.TrainSpec(train_input_fn, max_steps=20000)
    eval_spec = tf.estimator.EvalSpec(eval_input_fn)
    tf.estimator.train_and_evaluate(mnist_classifier, train_spec, eval_spec)

    if args.current_host == args.hosts[0]:
        mnist_classifier.export_savedmodel(args.sm_model_dir, serving_input_fn)

以下是错误:

#011 [[{{node conv2d/BiasAdd}} = _MklConv2DWithBias[T=DT_DOUBLE, _kernel="MklOp", data_format="NHWC", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:worker/replica:0/task:0/device:CPU:0"](Reshape, conv2d/kernel/read_S41, conv2d/bias/read_S51, DMT/_0, DMT/_1, DMT/_2)]]

0 个答案:

没有答案