当我执行以下代码时,错误消息 TypeError:zip参数#2必须支持迭代。
theta = tf.Variable(tf.zeros(100), dtype=tf.float32, name='theta')
@tf.function
def p(x):
N = tf.cast(tf.shape(x)[0], tf.int64)
softmax = tf.ones([N, 1]) * tf.math.softmax(theta)
idx_x = tf.stack([tf.range(N, dtype=tf.int64), x-1], axis=1)
return tf.gather_nd(softmax, idx_x)
@tf.function
def softmaxLoss(x):
return tf.reduce_mean(-tf.math.log(p(x)))
train_dset = tf.data.Dataset.from_tensor_slices(data_train).\
repeat(1).batch(BATCH_SIZE)
# Create the metrics
loss_metric = tf.keras.metrics.Mean(name='train_loss')
val_loss_metric = tf.keras.metrics.Mean(name='val_loss')
optimizer = tf.keras.optimizers.Adam(0.001)
@tf.function
def train_step(inputs):
with tf.GradientTape() as tape:
log_loss = softmaxLoss(inputs)
gradients = tape.gradient(log_loss,theta)
optimizer.apply_gradients(zip(gradients, theta))
# Update the metrics
loss_metric.update_state(log_loss)
for epoch in range(NUM_EPOCHS):
# Reset the metrics
loss_metric.reset_states()
# Shuffle dataset before each training epoch
train_dset = train_dset.shuffle(buffer_size=10000)
for inputs in train_dset:
train_step(inputs)
检查后,我发现麻烦来自此行代码:
optimizer.apply_gradients(zip(gradients, theta))
如何解决此问题?
答案 0 :(得分:1)
您可以通过列出theta
来解决此问题,因为zip要求参数可以迭代(而单个tf.Variable
则不能迭代)。
因此:
optimizer.apply_gradients(zip(gradients, [theta]))