请解决以下情况:
df.apply(foo, axis=0)
# ==> apply foo() to each column
df.mean(axis=0)
# ==> apply mean() to each column
pd.concat([df1, df2], ... axis=0)
# ==> concat df1's rows on top of df2's rows
df.dropna(... axis=0)
# ==> drop a row
def foo(row):
return row.columnA + row.columnB
df.apply(foo, axis=1)
# ==> apply foo() to a row and move downwards to the next row. so, is this
# row-wise or column-wise? is this along a row or along a column?
并提出一个简单易行且统一的规则,以决定对axis
使用1还是0。您将要链接的“重复帖子”仅说明了一部分,而不是全部。