用向量[n,]填充逻辑矩阵[r,n]

时间:2019-04-25 14:27:19

标签: python pandas numpy

我有一个数字向量values(熊猫数据帧df中的一系列数字)。

idx     values

0          NaN
1            1
2            2
3          NaN
4          NaN
5           33
6           34
7           90
8          NaN
9            5
10         NaN
11          22
12          70
13         NaN
14         672
15          10
16          73
17           9
18         NaN
19          15

然后我构造了形式的逻辑矩阵

array([[1, 1, 1, ..., 0, 0, 0],
       [0, 1, 1, ..., 0, 0, 0],
       [0, 0, 1, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 1, 0, 0],
       [0, 0, 0, ..., 1, 1, 0],
       [0, 0, 0, ..., 1, 1, 1]])

使用从SO上的某个答案中获取的以下代码,不幸的是找不到了。

n=len(df)
k=5
r= n-k+1
mat=np.tile([1]*k+[0]*r, r)[:-r].reshape(r,n)

mat将具有形状(r,n),而df['values']将具有形状(n,)

mat中的值填充df['values']的正确方法是什么?

鉴于上一个示例,我的预期输出将是:

array([[NaN, 1, 2, NaN,       ..., 0, 0, 0],
       [  0, 1, 2,NaN,NaN,    ..., 0, 0, 0],
       [  0, 0, 2,NaN,NaN,33, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ...,  672, 10, 73, 9, 0, 0],
       [0, 0, 0, ...,      10,73, 9, NaN, 0],
       [0, 0, 0, ...,        73, 9, NaN, 15]])

关于如何实现这一目标的任何建议? 我尝试使用点积(希望它的行为与在matlab中一样,并复制向量r次,但不起作用。

2 个答案:

答案 0 :(得分:2)

您可以使用numpy.apply_along_axisnumpy.where

#!/usr/bin/env python3

import numpy as np
import pandas as pd

nan = np.nan

df = pd.DataFrame([
         nan, 1, 2, nan, nan, 33, 34, 90, 
         nan, 5, nan, 22, 70, nan, 672, 
         10, 73, 9, nan, 15], 
     columns=['values'])

n = len(df)
k = 5
r = n - k + 1

mat = np.tile([1] * k + [0] * r, r)[:-r].reshape(r, n)

mat = np.apply_along_axis(lambda row: np.where(row, df['values'], row), 1, mat)

print(mat)

输出:

[[ nan   1.   2.  nan  nan   0.   0.   0.   0.   0.   0.   0.   0.   0. 0.     0.   0.   0.   0.   0.]
 [  0.   1.   2.  nan  nan  33.   0.   0.   0.   0.   0.   0.   0.   0. 0.     0.   0.   0.   0.   0.]
 [  0.   0.   2.  nan  nan  33.  34.   0.   0.   0.   0.   0.   0.   0. 0.     0.   0.   0.   0.   0.]
 [  0.   0.   0.  nan  nan  33.  34.  90.   0.   0.   0.   0.   0.   0. 0.     0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.  nan  33.  34.  90.  nan   0.   0.   0.   0.   0. 0.     0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.  33.  34.  90.  nan   5.   0.   0.   0.   0. 0.     0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.  34.  90.  nan   5.  nan   0.   0.   0. 0.     0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.  90.  nan   5.  nan  22.   0.   0. 0.     0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.  nan   5.  nan  22.  70.   0. 0.     0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   5.  nan  22.  70.  nan 0.     0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.  nan  22.  70.  nan 672.   0.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.  22.  70.  nan 672.  10.   0.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.  70.  nan 672.  10.  73.   0.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.  nan 672.  10.  73.   9.   0.   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0. 672.  10.  73.   9.  nan   0.]
 [  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0. 0.    10.  73.   9.  nan  15.]]

答案 1 :(得分:1)

这是一种方法

ary=np.array([[0,1,1],[1,0,1]])
s=df['values'].values
ary1=ary.ravel().copy().astype('float')
ary1[ary1==1]=np.tile(s,len(ary))[ary1==1]

ary1.reshape(len(ary),-1)

Out[446]: 
array([[ 0.,  1.,  2.],
       [nan,  0.,  2.]])

数据输入:

df

idx     values
0          NaN
1            1
2            2