给出一个图,我需要生成所有拓扑顺序。 例如,给定下图:
我想生成所有拓扑顺序,这些顺序是:
由于可能存在许多拓扑顺序,因此需要延迟生成它们。当前,我有一个递归的有效实现,并且可以在scala-graph
库的顶部进行操作:
import scalax.collection.Graph
import scalax.collection.GraphPredef._
import scalax.collection.GraphEdge._
import scala.collection.mutable.ArrayStack
import scala.collection.Set
def allTopologicalSorts[T](graph: Graph[T, DiEdge]): Stream[List[graph.NodeT]] = {
val indegree: Map[graph.NodeT, Int] = graph.nodes.map(node => (node, node.inDegree)).toMap
def isSource(node: graph.NodeT): Boolean = indegree.get(node).get == 0
def getSources(): Set[graph.NodeT] = graph.nodes.filter(node => isSource(node))
def processSources(sources: Set[graph.NodeT], indegrees: Map[graph.NodeT, Int], topOrder: List[graph.NodeT], cnt: Int): Stream[List[graph.NodeT]] = {
if (sources.nonEmpty) {
// `sources` contain all the nodes we can pick
// --> generate all possibilities
sources.toStream.flatMap(src => {
val newTopOrder = src :: topOrder
var newSources = sources - src
// Decrease the in-degree of all adjacent nodes
var newIndegrees = indegrees
for (adjacent <- src.diSuccessors) {
val newIndeg = newIndegrees.get(adjacent).get - 1
newIndegrees = newIndegrees.updated(adjacent, newIndeg)
// If in-degree becomes zero, add to sources
if (newIndeg == 0) {
newSources = newSources + adjacent
}
}
processSources(newSources, newIndegrees, newTopOrder, cnt + 1)
})
}
else if (cnt != graph.nodes.size) {
throw new Error("There is a cycle in the graph.")
}
else {
topOrder.reverse #:: Stream.empty[List[graph.NodeT]]
}
}
processSources(getSources(), indegree, List[graph.NodeT](), 0)
}
现在,我可以生成所有(或仅几个)拓扑顺序,如下所示:
val graph: Graph[Int, DiEdge] = Graph(2 ~> 4, 2 ~> 7, 4 ~> 5)
allTopologicalSorts(graph) foreach println
我如何使算法尾部递归但仍然很懒?
答案 0 :(得分:5)
How to make tree mapping tail-recursive?
Tail recursive maximum depth method of binary tree in Scala
尝试使用scala.util.control.TailCalls
import scalax.collection.Graph
import scalax.collection.GraphPredef._
import scalax.collection.GraphEdge._
import scala.collection.Set
import scala.util.control.TailCalls.{TailRec, done, tailcall}
import cats.Monad
import cats.instances.stream._
import cats.syntax.traverse._
object App {
implicit val tailRecMonad: Monad[TailRec] = new Monad[TailRec] {
override def pure[A](x: A): TailRec[A] = done(x)
override def flatMap[A, B](fa: TailRec[A])(f: A => TailRec[B]): TailRec[B] = fa.flatMap(f)
override def tailRecM[A, B](a: A)(f: A => TailRec[Either[A, B]]): TailRec[B] = ???
}
def allTopologicalSorts[T](graph: Graph[T, DiEdge]): Stream[List[graph.NodeT]] = {
val indegree: Map[graph.NodeT, Int] = graph.nodes.map(node => (node, node.inDegree)).toMap
def isSource(node: graph.NodeT): Boolean = indegree.get(node).get == 0
def getSources(): Set[graph.NodeT] = graph.nodes.filter(node => isSource(node))
def processSources(sources: Set[graph.NodeT], indegrees: Map[graph.NodeT, Int], topOrder: List[graph.NodeT], cnt: Int): TailRec[Stream[List[graph.NodeT]]] = {
if (sources.nonEmpty) {
// `sources` contain all the nodes we can pick
// --> generate all possibilities
sources.toStream.flatTraverse/*flatMap*/(src => {
val newTopOrder = src :: topOrder
var newSources = sources - src
// Decrease the in-degree of all adjacent nodes
var newIndegrees = indegrees
for (adjacent <- src.diSuccessors) {
val newIndeg = newIndegrees.get(adjacent).get - 1
newIndegrees = newIndegrees.updated(adjacent, newIndeg)
// If in-degree becomes zero, add to sources
if (newIndeg == 0) {
newSources = newSources + adjacent
}
}
tailcall(processSources(newSources, newIndegrees, newTopOrder, cnt + 1))
})
}
else if (cnt != graph.nodes.size) {
done(throw new Error("There is a cycle in the graph."))
}
else {
done(topOrder.reverse #:: Stream.empty[List[graph.NodeT]])
}
}
processSources(getSources(), indegree, List[graph.NodeT](), 0).result
}
def main(args: Array[String]): Unit = {
val graph: Graph[Int, DiEdge] = Graph(2 ~> 4, 2 ~> 7, 4 ~> 5)
allTopologicalSorts(graph) foreach println
}
}
或者您可以使用cats.free.Trampoline
http://eed3si9n.com/herding-cats/stackless-scala-with-free-monads.html
import scalax.collection.Graph
import scalax.collection.GraphEdge._
import scalax.collection.GraphPredef._
import cats.free.Trampoline
import cats.free.Trampoline.{done, defer}
import cats.instances.stream._
import cats.instances.function._
import cats.syntax.traverse._
import scala.collection.Set
object App {
def allTopologicalSorts[T](graph: Graph[T, DiEdge]): Stream[List[graph.NodeT]] = {
val indegree: Map[graph.NodeT, Int] = graph.nodes.map(node => (node, node.inDegree)).toMap
def isSource(node: graph.NodeT): Boolean = indegree.get(node).get == 0
def getSources(): Set[graph.NodeT] = graph.nodes.filter(node => isSource(node))
def processSources(sources: Set[graph.NodeT], indegrees: Map[graph.NodeT, Int], topOrder: List[graph.NodeT], cnt: Int): Trampoline[Stream[List[graph.NodeT]]] = {
if (sources.nonEmpty) {
// `sources` contain all the nodes we can pick
// --> generate all possibilities
sources.toStream.flatTraverse(src => {
val newTopOrder = src :: topOrder
var newSources = sources - src
// Decrease the in-degree of all adjacent nodes
var newIndegrees = indegrees
for (adjacent <- src.diSuccessors) {
val newIndeg = newIndegrees.get(adjacent).get - 1
newIndegrees = newIndegrees.updated(adjacent, newIndeg)
// If in-degree becomes zero, add to sources
if (newIndeg == 0) {
newSources = newSources + adjacent
}
}
defer(processSources(newSources, newIndegrees, newTopOrder, cnt + 1))
})
}
else if (cnt != graph.nodes.size) {
done(throw new Error("There is a cycle in the graph."))
}
else {
done(topOrder.reverse #:: Stream.empty[List[graph.NodeT]])
}
}
processSources(getSources(), indegree, List[graph.NodeT](), 0).run
}
def main(args: Array[String]): Unit = {
val graph: Graph[Int, DiEdge] = Graph(2 ~> 4, 2 ~> 7, 4 ~> 5)
allTopologicalSorts(graph) foreach println
}
}
答案 1 :(得分:1)
在拓扑类别上实现这种变化而不会炸毁堆栈,也不会立即计算所有可能性是很痛苦的。我完成了以下实现:
import scalax.collection.Graph
import scalax.collection.GraphPredef._
import scalax.collection.GraphEdge._
import scala.collection.Set
object test extends App {
class TopSorter[T](val graph: Graph[T, DiEdge]) extends Iterator[List[T]] {
final case class State[Node](indegrees: Map[Node, Int], topo: List[Node])
sealed trait TopoRes
final case class Res(order: List[graph.NodeT], sorter: Set[State[graph.NodeT]]) extends TopoRes
final case object Nil extends TopoRes
private[this] val indegs: Map[graph.NodeT, Int] = graph.nodes.map(node => (node, node.inDegree)).toMap
private[this] var nextOrder = nextTopo(Set(State(indegs, List[graph.NodeT]())))
override def hasNext: Boolean = nextOrder.isInstanceOf[Res]
override def next(): List[T] = nextOrder match {
case Res(order, sorter) => {
nextOrder = nextTopo(sorter)
order.map(_.value)
}
case Nil => throw new NoSuchElementException("next on empty iterator")
}
private def nextTopo(w: Set[State[graph.NodeT]]): TopoRes = {
if (w.isEmpty) {
Nil
}
else {
w.head match {
case State(indegrees, topo) => {
val sources = indegrees.keySet.filter(indegrees.get(_).get == 0)
if (sources.isEmpty) {
Res(topo.reverse, w.tail) // The result is the order + state to compute the next order
}
else {
sourcesLoop(sources, w.tail, topo, indegrees)
}
}
}
}
}
private def sourcesLoop(sources: Set[graph.NodeT], w: Set[State[graph.NodeT]], topo: List[graph.NodeT], indegrees: Map[graph.NodeT, Int]): TopoRes = {
if (sources.isEmpty) {
nextTopo(w)
}
else {
val source = sources.head
succLoop(source.diSuccessors, indegrees - source, sources, w, source, topo, indegrees)
}
}
private def succLoop(succs: Set[graph.NodeT], indegrees: Map[graph.NodeT, Int], sources: Set[graph.NodeT], w: Set[State[graph.NodeT]], source: graph.NodeT, topo: List[graph.NodeT], oldIndegrees: Map[graph.NodeT, Int]): TopoRes = {
if (succs.isEmpty) {
sourcesLoop(sources.tail, w + State(indegrees, source :: topo), topo, oldIndegrees)
}
else {
val succ = succs.head
succLoop(succs.tail, indegrees.updated(succ, indegrees.get(succ).get - 1), sources, w, source, topo, oldIndegrees)
}
}
}
val graph: Graph[Int, DiEdge] = Graph(2 ~> 4, 2 ~> 7, 4 ~> 5)
val it = new TopSorter(graph)
while (it.hasNext)
println(it.next())
}