我有一个5-6列的平面数据框。我想嵌套它们并将其转换为嵌套的数据框,以便随后将其写入拼花格式。
但是,我不想使用案例类,因为我试图使代码尽可能地可配置。我坚持这一部分,需要一些帮助。
我的输入:
ID ID-2 Count(apple) Count(banana) Count(potato) Count(Onion)
1 23 1 0 2 0
2 23 0 1 0 1
2 29 1 0 1 0
我的输出:
第1行:
{
"id": 1,
"ID-2": 23,
"fruits": {
"count of apple": 1,
"count of banana": 0
},
"vegetables": {
"count of potato": 2,
"count of onion": 0
}
}
我尝试在spark数据框中使用“映射”功能,将值映射到case类。但是,我将使用这些字段的名称,并且可能也会更改它们。
我不想维护案例类并将行映射到sql列名,因为每次都会涉及代码更改。
我正在考虑使用要与数据框的列名保持一致的列名维护一个Hashmap。例如,在示例中,我将“ Count(apple)”映射到“ count of apple”。但是,我想不出一种简单的好方法来将架构作为配置传递,然后将其映射到我的代码中
答案 0 :(得分:2)
这是一种使用scala socket.io-parser decoded 2/5ve6v0iuzfrjf9cwgv2a8i,["returnData","test"] as {"type":2,"nsp":"/5ve6v0iuzfrjf9cwgv2a8i","data":["returnData","test"]} +29ms
socket.io:socket got packet {"type":2,"nsp":"/5ve6v0iuzfrjf9cwgv2a8i","data":["returnData","test"]} +37ms
socket.io:socket emitting event ["returnData","test"] +5ms
socket.io:socket dispatching an event ["returnData","test"] +2ms
类型通过以下数据集创建列映射的方法:
Map
首先,我们使用val data = Seq(
(1, 23, 1, 0, 2, 0),
(2, 23, 0, 1, 0, 1),
(2, 29, 1, 0, 1, 0)).toDF("ID", "ID-2", "count(apple)", "count(banana)", "count(potato)", "count(onion)")
集合和负责映射的函数来声明映射:
scala.collection.immutable.Map
该函数遍历给定数据帧的列,并使用import org.apache.spark.sql.{Column, DataFrame}
val colMapping = Map(
"count(banana)" -> "no of banana",
"count(apple)" -> "no of apples",
"count(potato)" -> "no of potatos",
"count(onion)" -> "no of onions")
def mapColumns(colsMapping: Map[String, String], df: DataFrame) : DataFrame = {
val mapping = df
.columns
.map{ c => if (colsMapping.contains(c)) df(c).alias(colsMapping(c)) else df(c)}
.toList
df.select(mapping:_*)
}
标识具有公用键的列。然后,它会根据应用的映射返回更改名称(带有别名)的列。
mapping
的输出:
mapColumns(colMapping, df).show(false)
最后,我们通过+---+----+------------+------------+-------------+------------+
|ID |ID-2|no of apples|no of banana|no of potatos|no of onions|
+---+----+------------+------------+-------------+------------+
|1 |23 |1 |0 |2 |0 |
|2 |23 |0 |1 |0 |1 |
|2 |29 |1 |0 |1 |0 |
+---+----+------------+------------+-------------+------------+
类型生成水果和蔬菜:
struct
请注意,在完成转换之后,我们将删除colMapping集合的所有cols。
输出:
df1.withColumn("fruits", struct(col(colMapping("count(banana)")), col(colMapping("count(apple)"))))
.withColumn("vegetables", struct(col(colMapping("count(potato)")), col(colMapping("count(onion)"))))
.drop(colMapping.values.toList:_*)
.toJSON
.show(false)
答案 1 :(得分:0)
::: scala中的(双冒号)在scala列表中被视为“ cons”。 这是创建Scala列表或将元素插入现有可变列表的方法。
scala> val aList = 24 :: 34 :: 56 :: Nil
aList: List[Int] = List(24, 34, 56)
scala> 99 :: aList
res3: List[Int] = List(99, 24, 34, 56)
在第一个示例中,Nil是空列表,并被视为最右边的cons操作的结尾。
但是
scala> val anotherList = 23 :: 34
<console>:12: error: value :: is not a member of Int
val anotherList = 23 :: 34
由于没有要插入的现有列表,因此会引发错误。
答案 2 :(得分:0)
val df = spark.sqlContext.read.option("header","true").csv("/sampleinput.txt")
val df1 = df.withColumn("fruits",struct("Count(apple)","Count(banana)") ).withColumn("vegetables",struct("Count(potato)","Count(Onion)")).groupBy("ID","ID-2").agg(collect_list("fruits") as "fruits",collect_list("vegetables") as "vegetables").toJSON
df1.take(1)
输出:
{"ID":"2","ID-2":"23","fruits":[{"Count(apple)":"0","Count(banana)":"1"}],"vegetables":[{"Count(potato)":"0","Count(Onion)":"1"}]}