平均会话持续时间指标是Firebase分析仪表板中以前可用的。但是现在,它在Firebase分析仪表板中不可用。现在,我们仅看到“每个用户的参与度”。每位用户的参与度和平均会话时长都一样吗?如何提取平均Fiebase分析的会话持续时间?如何在Bigquery中查询以提取平均费用。 Firebase的会话持续时间指标。 enter image description here
答案 0 :(得分:1)
每位用户的参与度与平均水平不同。会话时长。每个用户的参与度是用户每天在应用中花费的时间,而不是会话中的花费。
您可以找到平均最新版本下的Firebase Analytics中的会话时长。
这里是用于计算平均值的查询。 BigQuery中的会话长度:
with timeline as
(
select
user_pseudo_id
, event_timestamp
, lag(event_timestamp, 1) over (partition by user_pseudo_id order by event_timestamp) as prev_event_timestamp
from
`YYYYY.analytics_XXXXX.events_*`
where
-- at first - a sliding period - how many days in the past we are looking into:
_table_suffix
between format_date("%Y%m%d", date_sub(current_date, interval 10 day))
and format_date("%Y%m%d", date_sub(current_date, interval 1 day))
)
, session_timeline as
(
select
user_pseudo_id
, event_timestamp
, case
when
-- half a hour period - a threshold for a new 'session'
event_timestamp - prev_event_timestamp >= (30*60*1000*1000)
or
prev_event_timestamp is null
then 1
else 0
end as is_new_session_flag
from
timeline
)
, marked_sessions as
(
select
user_pseudo_id
, event_timestamp
, sum(is_new_session_flag) over (partition by user_pseudo_id order by event_timestamp) AS user_session_id
from session_timeline
)
, measured_sessions as
(
select
user_pseudo_id
, user_session_id
-- session duration in seconds with 2 digits after the point
, round((max(event_timestamp) - min(event_timestamp))/ (1000 * 1000), 2) as session_duration
from
marked_sessions
group by
user_pseudo_id
, user_session_id
having
-- let's count only sessions longer than 10 seconds
session_duration >= 10
)
select
count(1) as number_of_sessions
, round(avg(session_duration), 2) as average_session_duration_in_sec
from
measured_sessions
关于如何获取event_date和app_info.id的其他问题,请参见以下查询:
with timeline as
(
select
event_date,app_info.id,user_pseudo_id
, event_timestamp
, lag(event_timestamp, 1) over (partition by user_pseudo_id order by event_timestamp) as prev_event_timestamp
from
`<table>_*`
where
-- at first - a sliding period - how many days in the past we are looking into:
_table_suffix
between format_date("%Y%m%d", date_sub(current_date, interval 10 day))
and format_date("%Y%m%d", date_sub(current_date, interval 1 day))
)
, session_timeline as
(
select
event_date,id,
user_pseudo_id
, event_timestamp
, case
when
-- half a hour period - a threshold for a new 'session'
event_timestamp - prev_event_timestamp >= (30*60*1000*1000)
or
prev_event_timestamp is null
then 1
else 0
end as is_new_session_flag
from
timeline
)
, marked_sessions as
(
select
event_date,id, user_pseudo_id
, event_timestamp
, sum(is_new_session_flag) over (partition by user_pseudo_id order by event_timestamp) AS user_session_id
from session_timeline
)
, measured_sessions as
(
select
event_date,id, user_pseudo_id
, user_session_id
-- session duration in seconds with 2 digits after the point
, round((max(event_timestamp) - min(event_timestamp))/ (1000 * 1000), 2) as session_duration
from
marked_sessions
group by
event_date, id, user_pseudo_id
, user_session_id
having
-- let's count only sessions longer than 10 seconds
session_duration >= 10
)
select
event_date, id, count(1) as number_of_sessions
, round(avg(session_duration), 2) as average_session_duration_in_sec
from
measured_sessions
group by event_date, id
答案 1 :(得分:0)
每个会话(自2019年12月以来在这里定义:https://firebase.googleblog.com/2018/12/new-changes-sessions-user-engagement.html)都有一个session_id(除其他参数外)。我认为计算平均会话持续时间最安全,最可靠的方法是将数据提取到BigQuery,然后按会话计算第一个时间戳和最后一个时间戳之间的平均差。为此,您需要展平event_params
的数组。例如,这是在AWS Athena中完成的方式:
WITH arrays_flattened AS
(SELECT params.key AS key,
params.value.int_value AS id,
event_timestamp,
event_date
FROM your_database
CROSS JOIN UNNEST(event_params) AS t(params)
WHERE params.key = 'ga_session_id'), duration AS
(SELECT MAX(event_timestamp)-MIN(event_timestamp) AS duration
FROM arrays_flattened
WHERE key = 'ga_session_id'
GROUP BY id)
SELECT AVG(duration)
FROM duration