我想对给定行有条件地突变一个新列,该列代表以{_n“结尾的列中的pmax()
。我知道我可以通过显式指定列名来做到这一点,但我希望这是调用ends_with()
或类似名称的结果。
我尝试过mutate_at()
和普通mutate()
。我的一般想法是,我需要将vars(ends_with("_n"))
传递给某物,但我只是缺少该物。
谢谢。
library(dplyr)
library(tidyr)
mtcars %>%
group_by(vs, gear) %>%
summarize(mean = mean(disp),
sd = sd(disp),
n = n()) %>%
mutate_if(is.double, round, 1) %>%
mutate(mean_sd = paste0(mean, " (", sd, ")")) %>%
select(-mean, -sd) %>%
group_by(vs, gear) %>%
nest(n, mean_sd, .key = "summary") %>%
spread(key = vs, value = summary) %>%
unnest(`0`, `1`, .sep = "_")
gear `0_n` `0_mean_sd` `1_n` `1_mean_sd`
<dbl> <int> <chr> <int> <chr>
1 3 12 357.6 (71.8) 3 201 (72)
2 4 2 160 (0) 10 115.6 (38.5)
3 5 4 229.3 (113.9) 1 95.1 (NA)
编辑:两个答案都值得赞赏。干杯!
答案 0 :(得分:2)
这是使用unquote-splice运算符的一种方法。我们可以将要比较的select
列,然后将它们作为向量拼接到pmax
中:
library(tidyverse)
tbl <- structure(list(gear = c(3, 4, 5), `0_n` = c(12L, 2L, 4L), `0_mean_sd` = c("357.6 (71.8)", "160 (0)", "229.3 (113.9)"), `1_n` = c(3L, 10L, 1L), `1_mean_sd` = c("201 (72)", "115.6 (38.5)", "95.1 (NA)")), row.names = c(NA, -3L), class = c("tbl_df", "tbl", "data.frame"))
tbl %>%
mutate(pmax = pmax(!!!select(., ends_with("_n"))))
#> # A tibble: 3 x 6
#> gear `0_n` `0_mean_sd` `1_n` `1_mean_sd` pmax
#> <dbl> <int> <chr> <int> <chr> <int>
#> 1 3 12 357.6 (71.8) 3 201 (72) 12
#> 2 4 2 160 (0) 10 115.6 (38.5) 10
#> 3 5 4 229.3 (113.9) 1 95.1 (NA) 4
由reprex package(v0.2.1)于2019-04-23创建
答案 1 :(得分:1)
一个基本的R版本,作为替代:
tbl <- structure(list(gear = c(3, 4, 5), `0_n` = c(12L, 2L, 4L), `0_mean_sd` = c("357.6 (71.8)", "160 (0)", "229.3 (113.9)"), `1_n` = c(3L, 10L, 1L), `1_mean_sd` = c("201 (72)", "115.6 (38.5)", "95.1 (NA)")), row.names = c(NA, -3L), class = c("tbl_df", "tbl", "data.frame"))
tbl$pmax <- do.call(pmax,as.list(dat[,grepl("_n$",names(dat))]))