运行kafka代码获取
1)错误StreamExecution:查询[id = c6426655-446f-4306-91ba-d78e68e05c15,runId = 420382c1-8558-45a1-b26d-f6299044fa04]错误终止 java.lang.ExceptionInInitializerError
2)线程“ [id = c6426655-446f-4306-91ba-d78e68e05c15,runId = 420382c1-8558-45a1-b26d-f6299044fa04]“ java.lang.ExceptionInInitializerError
3)线程“ main”中的异常 org.apache.spark.sql.streaming.StreamingQueryException:null
sbt依赖
// https://mvnrepository.com/artifact/org.apache.spark/spark-core libraryDependencies + =“ org.apache.spark” %%“ spark-core”%“ 2.2.3”
// https://mvnrepository.com/artifact/org.apache.spark/spark-sql libraryDependencies + =“ org.apache.spark” %%“ spark-sql”%“ 2.2.3”
// https://mvnrepository.com/artifact/org.apache.spark/spark-streaming libraryDependencies + =“ org.apache.spark” %%“ spark-streaming”%“ 2.2.3”%“提供”
// https://mvnrepository.com/artifact/org.apache.kafka/kafka libraryDependencies + =“ org.apache.kafka” %%“ kafka”%“ 2.1.1”
// https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients libraryDependencies + =“ org.apache.kafka”%“ kafka-clients”%“ 2.1.1”
// https://mvnrepository.com/artifact/org.apache.kafka/kafka-streams libraryDependencies + =“ org.apache.kafka”%“ kafka-streams”%“ 2.1.1”
// https://mvnrepository.com/artifact/org.apache.spark/spark-sql-kafka-0-10 libraryDependencies + =“ org.apache.spark” %%“ spark-sql-kafka-0-10”%“ 2.2.3”
// https://mvnrepository.com/artifact/org.apache.kafka/kafka-streams-scala libraryDependencies + =“ org.apache.kafka” %%“ kafka-streams-scala”%“ 2.1.1”
import java.sql.Timestamp
import org.apache.spark.sql.SparkSession
object demo1 {
def main(args: Array[String]): Unit = {
System.setProperty("hadoop.home.dir","c:\\hadoop\\")
val spark: SparkSession = SparkSession.builder
.appName("My Spark Application")
.master("local[*]")
.config("spark.sql.warehouse.dir", "file:///C:/temp") // Necessary to work around a Windows bug in Spark 2.0.0; omit if you're not on Windows.
.config("spark.sql.streaming.checkpointLocation", "file:///C:/checkpoint")
.getOrCreate
spark.sparkContext.setLogLevel("ERROR")
spark.conf.set("spark,sqlshuffle.partations","2")
val df = spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "162.244.80.189:9092")
.option("startingOffsets", "earliest")
.option("group.id","test1")
.option("subscribe", "demo11")
.load()
import spark.implicits._
val dsStruc = df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)", "timestamp").as[(String, String, Timestamp)]
val abc = df.writeStream
.outputMode("append")
.format("console")
.start().awaitTermination()
df.show()
答案 0 :(得分:0)
我有同样的问题。我使用了错误的库spark-sql-kafka库版本(2.2.0而不是2.3.0)。我的成功配置是:
org.apache.spark spark-core_2.11 2.3.0提供
org.apache.spark spark-sql_2.11 2.3.0
org.apache.spark spark-sql-kafka-0-10_2.11 2.3.0
org.apache.kafka kafka客户端 0.10.1.0
我希望它会有所帮助。 我受到这篇文章的启发