用于多输入DNN的LIME图像分类解释

时间:2019-04-21 17:45:33

标签: deep-learning conv-neural-network lime multiple-input

我对深度学习还很陌生,但是我设法建立了一个多分支的图像分类架构,产生了令人满意的结果。

不太重要:我正在研究KKBox客户流失(https://kaggle.com/c/kkbox-churn-prediction-challenge/data),在那里我将客户行为,交易和静态数据转换为热图,并尝试基于此对流失进行分类。

分类本身可以正常工作。当我尝试应用LIME来查看结果从何而来时,我的问题就来了。在遵循以下代码时:https://marcotcr.github.io/lime/tutorials/Tutorial%20-%20images.html,但我使用输入列表[members [0],transactions [0],user_logs [0]]时,出现以下错误: AttributeError:'list '对象没有属性'shape'

浮现在脑海的是,LIME可能不是针对像我这样的多输入体系结构制作的。另一方面,Microsoft Azure也具有多分支体系结构(http://www.freepatentsonline.com/20180253637.pdf?fbclid=IwAR1j30etyDGPCmG-QGfb8qaGRysvnS_f5wLnKz-KdwEbp2Gk0_-OBsSepVc),据称他们使用LIME来解释其结果(https://www.slideshare.net/FengZhu18/predicting-azure-churn-with-deep-learning-and-explaining-predictions-with-lime)。

我试图将图像连接成一个输入,但是这种方法产生的结果要比多输入方法差得多。尽管LIME可以使用这种方法(即使不像通常的图像识别那样可理解)。

DNN架构:

# Members
members_input = Input(shape=(61,4,3), name='members_input')
x1 = Dropout(0.2)(members_input)
x1 = Conv2D(32, kernel_size = (61,4), padding='valid', activation='relu', strides=1)(x1)
x1 = GlobalMaxPooling2D()(x1)

# Transactions
transactions_input = Input(shape=(61,39,3), name='transactions_input')
x2 = Dropout(0.2)(transactions_input)
x2 = Conv2D(32, kernel_size = (61,1,), padding='valid', activation='relu', strides=1)(x2)
x2 = Conv2D(32, kernel_size = (1,39,), padding='valid', activation='relu', strides=1)(x2)
x2 = GlobalMaxPooling2D()(x2)

# User logs
userlogs_input = Input(shape=(61,7,3), name='userlogs_input')
x3 = Dropout(0.2)(userlogs_input)
x3 = Conv2D(32, kernel_size = (61,1,), padding='valid', activation='relu', strides=1)(x3)
x3 = Conv2D(32, kernel_size = (1,7,), padding='valid', activation='relu', strides=1)(x3)
x3 = GlobalMaxPooling2D()(x3)

# User_logs + Transactions + Members
merged = keras.layers.concatenate([x1,x2,x3]) # Merged layer
out = Dense(2)(merged)
out_2 = Activation('softmax')(out)

model = Model(inputs=[members_input, transactions_input, userlogs_input], outputs=out_2)
model.compile(optimizer="adam", loss='categorical_crossentropy', metrics=['accuracy'])
model.summary()

尝试使用LIME:

explainer = lime_image.LimeImageExplainer()

explanation = explainer.explain_instance([members_test[0],transactions_test[0],user_logs_test[0]], model.predict, top_labels=2, hide_color=0, num_samples=1000)

模型摘要:

__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
transactions_input (InputLayer) (None, 61, 39, 3)    0                                            
__________________________________________________________________________________________________
userlogs_input (InputLayer)     (None, 61, 7, 3)     0                                            
__________________________________________________________________________________________________
members_input (InputLayer)      (None, 61, 4, 3)     0                                            
__________________________________________________________________________________________________
dropout_2 (Dropout)             (None, 61, 39, 3)    0           transactions_input[0][0]         
__________________________________________________________________________________________________
dropout_3 (Dropout)             (None, 61, 7, 3)     0           userlogs_input[0][0]             
__________________________________________________________________________________________________
dropout_1 (Dropout)             (None, 61, 4, 3)     0           members_input[0][0]              
__________________________________________________________________________________________________
conv2d_2 (Conv2D)               (None, 1, 39, 32)    5888        dropout_2[0][0]                  
__________________________________________________________________________________________________
conv2d_4 (Conv2D)               (None, 1, 7, 32)     5888        dropout_3[0][0]                  
__________________________________________________________________________________________________
conv2d_1 (Conv2D)               (None, 1, 1, 32)     23456       dropout_1[0][0]                  
__________________________________________________________________________________________________
conv2d_3 (Conv2D)               (None, 1, 1, 32)     39968       conv2d_2[0][0]                   
__________________________________________________________________________________________________
conv2d_5 (Conv2D)               (None, 1, 1, 32)     7200        conv2d_4[0][0]                   
__________________________________________________________________________________________________
global_max_pooling2d_1 (GlobalM (None, 32)           0           conv2d_1[0][0]                   
__________________________________________________________________________________________________
global_max_pooling2d_2 (GlobalM (None, 32)           0           conv2d_3[0][0]                   
__________________________________________________________________________________________________
global_max_pooling2d_3 (GlobalM (None, 32)           0           conv2d_5[0][0]                   
__________________________________________________________________________________________________
concatenate_1 (Concatenate)     (None, 96)           0           global_max_pooling2d_1[0][0]     
                                                                 global_max_pooling2d_2[0][0]     
                                                                 global_max_pooling2d_3[0][0]     
__________________________________________________________________________________________________
dense_1 (Dense)                 (None, 2)            194         concatenate_1[0][0]              
__________________________________________________________________________________________________
activation_1 (Activation)       (None, 2)            0           dense_1[0][0]                    
==================================================================================================

因此,我的问题是:有没有人有多输入DNN架构和LIME的经验?有没有我没有看到的解决方法?我可以使用另一种可解释的模型吗?

谢谢。

0 个答案:

没有答案