我在数据集中建立了一个用于图像分类的keras模型,但是当对图像进行模型分类时,我发现大约200张图像未分类,那么任何人都可以帮助我如何找出那些未分类的图像。这是我的模特
img_width= img_rows
img_height = img_cols
classes_num = 5
epochs = 10
model =Sequential()
model.add(Conv2D(32,(3,3), input_shape=(img_width, img_height, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(32,(3,3), input_shape=(img_width, img_height, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64,(3,3), input_shape=(img_width, img_height, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(256))
model.add(Activation('relu'))
model.add(Dropout(0.1))
model.add(Dense(classes_num ))
model.add(Activation('sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy',
metrics=['accuracy',mean_pred,recall,precision, fmeasure,
matthews_correlation,kullback_leibler_divergence,
binary_crossentropy])
model.save('model.h5')
model.summary()
print('model complied!!')
print('starting training....')
history = model.fit(X_train, Y_train, epochs=epochs, batch_size=64,validation_data=(X_test, Y_test))
'''