我对用Python模仿Excel的LOGEST函数很感兴趣,但不知道从哪里开始。
答案 0 :(得分:2)
这里是使用LOGEST的图形拟合器,如 https://support.office.com/en-us/article/logest-function-f27462d8-3657-4030-866b-a272c1d18b4b
import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
xData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.0, 6.6, 7.7])
yData = numpy.array([1.1, 20.2, 30.3, 60.4, 50.0, 60.6, 70.7])
# LOGEST from https://support.office.com/en-us/article/logest-function-f27462d8-3657-4030-866b-a272c1d18b4b
def func(x, b, m):
y = b * m**x
return y
# these are the same as the scipy defaults
initialParameters = numpy.array([1.0, 1.0])
# curve fit the test data
fittedParameters, pcov = curve_fit(func, xData, yData, initialParameters)
modelPredictions = func(xData, *fittedParameters)
absError = modelPredictions - yData
SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))
print('Parameters:', fittedParameters)
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
print()
##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
# first the raw data as a scatter plot
axes.plot(xData, yData, 'D')
# create data for the fitted equation plot
xModel = numpy.linspace(min(xData), max(xData))
yModel = func(xModel, *fittedParameters)
# now the model as a line plot
axes.plot(xModel, yModel)
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
plt.show()
plt.close('all') # clean up after using pyplot
graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)
答案 1 :(得分:0)
您可以使用对数进行线性回归,也可以拟合指数函数。在这里,我展示了分别使用scipy.stats.linregress和scipy.optimize.curve_fit的两种解决方案。
以下是来自Microsoft的Excel中函数LOGEST
上documentation的示例:
使用linregress
的方法:
from scipy.stats import linregress
import math
x = months = [11, 12, 13, 14, 15, 16]
y = units = [33100, 47300, 69000, 102000, 150000, 220000]
slope, intercept, r_value, p_value, std_err = linregress(
x,
list(map(math.log, y)),
)
print('m', math.exp(slope))
print('b', math.exp(intercept))
输出:
m 1.4632756281161756
b 495.3047701587278
使用curve_fit
的方法:
from scipy.optimize import curve_fit
def f(x, b, m):
return b * m ** x
popt, pcov = curve_fit(f, x, y)
print('m', popt[1])
print('b', popt[0])
输出:
m 1.4678382448967822
b 473.717820465515