恐怕标题不是很具描述性,但我想不出更好的标题。本质上我的问题是:
对于任意整数=ARRAYFORMULA(SUBSTITUTE(SUBSTITUTE(QUERY(TRANSPOSE(QUERY(TRANSPOSE(
SUBSTITUTE(A1:C, " ", "♦")), , 999^99))), " ", ""), "♦", " "))
,(n, 1, h, w)
和n
,我有一个形状为h
的pytorch张量(在我的特定情况下,该数组代表一批尺寸为1的灰度图像w
。
我还有另一个张量为h x w
的张量,该张量将第一个数组中的每个可能值(即第一个数组可以包含从(m, 2)
到0
的值)映射到某个值元组。我想将此映射“应用”到第一个数组,以便获得形状为m - 1
的数组。
我希望这很清楚,我很难用语言来表达,这是一个代码示例(但是请注意,由于涉及到四个维度数组,因此也不是很直观):
(n, 2, h, w)
如何高效地执行此转换? (理想情况下,不使用任何其他内存)。在numpy中,可以使用import torch
m = 18
# could also be arbitrary tensor with this shape with values between 0 and m - 1
a = torch.arange(m).reshape(2, 1, 3, 3)
# could also be arbitrary tensor with this shape
b = torch.LongTensor(
[[11, 17, 9, 6, 5, 4, 2, 10, 3, 13, 14, 12, 7, 1, 15, 16, 8, 0],
[11, 8, 4, 14, 13, 12, 16, 1, 5, 17, 0, 10, 7, 15, 9, 6, 2, 3]]).t()
# I probably have to do this and the permute/reshape, but how?
c = b.index_select(0, a.flatten())
# ...
# another approach that I think works (but I'm not really sure why, I found this
# more or less by trial and error). I would ideally like to find a 'nicer' way
# of doing this
c = torch.stack([
b.index_select(0, a_.flatten()).reshape(3, 3, 2).permute(2, 0, 1)
for a_ in a
])
# the end result should be:
#[[[[11, 17, 9],
# [ 6, 5, 4],
# [ 2, 10, 3]],
#
# [[11, 8, 4],
# [14, 13, 12],
# [16, 1, 5]]],
#
#
# [[[13, 14, 12],
# [ 7, 1, 15],
# [16, 8, 0]],
#
# [[17, 0, 10],
# [ 7, 15, 9],
# [ 6, 2, 3]]]]
轻松实现,但是似乎没有与之相对应的pytorch。
答案 0 :(得分:1)
这是使用切片,堆叠和基于视图的重塑的一种方法:
In [239]: half_way = b.shape[0]//2
In [240]: upper_half = torch.stack((b[:half_way, :][:, 0], b[:half_way, :][:, 1]), dim=0).view(-1, 3, 3)
In [241]: lower_half = torch.stack((b[half_way:, :][:, 0], b[half_way:, :][:, 1]), dim=0).view(-1, 3, 3)
In [242]: torch.stack((upper_half, lower_half))
Out[242]:
tensor([[[[11, 17, 9],
[ 6, 5, 4],
[ 2, 10, 3]],
[[11, 8, 4],
[14, 13, 12],
[16, 1, 5]]],
[[[13, 14, 12],
[ 7, 1, 15],
[16, 8, 0]],
[[17, 0, 10],
[ 7, 15, 9],
[ 6, 2, 3]]]])
一些警告是,这仅适用于n=2
。但是,这比基于循环的方法快1.7倍,但涉及更多代码。
这是一种更通用的方法,它可以缩放为任意正整数n
:
In [327]: %%timeit
...: block_size = b.shape[0]//a.shape[0]
...: seq_of_tensors = [b[block_size*idx:block_size*(idx+1), :].permute(1, 0).flatten().reshape(2, 3, 3).unsqueeze(0) for idx in range(a.shape[0])]
...: torch.cat(seq_of_tensors)
...:
23.5 µs ± 460 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
您也可以使用view
代替整形:
block_size = b.shape[0]//a.shape[0]
seq_of_tensors = [b[block_size*idx:block_size*(idx+1), :].permute(1, 0).flatten().view(2, 3, 3).unsqueeze(0) for idx in range(a.shape[0])]
torch.cat(seq_of_tensors)
# outputs
tensor([[[[11, 17, 9],
[ 6, 5, 4],
[ 2, 10, 3]],
[[11, 8, 4],
[14, 13, 12],
[16, 1, 5]]],
[[[13, 14, 12],
[ 7, 1, 15],
[16, 8, 0]],
[[17, 0, 10],
[ 7, 15, 9],
[ 6, 2, 3]]]])
注意:请注意,由于我们必须将张量b
均匀划分以进行置换,展平,重塑,解压,然后连接/堆叠,因此我仍然使用列表理解尺寸0。它仍然比我上面的解决方案快一点。