将spark.sql查询转换为spark / scala查询

时间:2019-04-20 14:49:52

标签: scala apache-spark apache-spark-sql

我正在使用一些业务逻辑在spark数据框中添加一列,该逻辑在scala中返回true / false。该实现是使用UDF完成的,并且UDF具有10个以上的参数,因此我们需要在使用UDF之前先注册它。已完成

spark.udf.register("new_col", new_col)

// writing the UDF
val new_col(String, String, ..., Timestamp) => Boolean = (col1: String, col2: String, ..., col12: Timestamp) => {
     if ( ... ) true
     else false
}

现在,当我尝试编写以下spark / Scala作业时,它不起作用

val result = df.withColumn("new_col", new_col(col1, col2, ..., col12))

我收到以下错误

<console>:56: error: overloaded method value udf with alternatives:
  (f: AnyRef,dataType: org.apache.spark.sql.types.DataType)org.apache.spark.sql.expressions.UserDefinedFunction <and>
  (f: org.apache.spark.sql.api.java.UDF10[_, _, _, _, _, _, _, _, _, _, _],returnType: org.apache.spark.sql.types.DataType)org.apache.spark.sql.expressions.UserDefinedFunction <and>
  (f: org.apache.spark.sql.api.java.UDF9[_, _, _, _, _, _, _, _, _, _],returnType: org.apache.spark.sql.types.DataType)org.apache.spark.sql.expressions.UserDefinedFunction <and>
  (f: org.apache.spark.sql.api.java.UDF8[_, _, _, _, _, _, _, _, _],returnType: org.apache.spark.sql.types.DataType)org.apache.spark.sql.expressions.UserDefinedFunction <and>
  (f: org.apache.spark.sql.api.java.UDF7[_, _, _, _, _, _, _, _],returnType: org.apache.spark.sql.types.DataType)org.apache.spark.sql.expressions.UserDefinedFunction <and>
  (f: org.apache.spark.sql.api.java.UDF6[_, _, _, _, _, _, _],returnType: org.apache.spark.sql.types.DataType)org.apache.spark.sql.expressions.UserDefinedFunction <and>
  (f: org.apache.spark.sql.api.java.UDF5[_, _, _, _, _, _],returnType: org.apache.spark.sql.types.DataType)org.apache.spark.sql.expressions.UserDefinedFunction <and>
  (f: org.apache.spark.sql.api.java.UDF4[_, _, _, _, _],returnType: org.apache.spark.sql.types.DataType)org.apache.spark.sql.expressions.UserDefinedFunction <and>
  (f: org.apache.spark.sql.api.java.UDF3[_, _, _, _],returnType: org.apache.spark.sql.types.DataType)org.apache.spark.sql.expressions.UserDefinedFunction <and>
  (f: org.apache.spark.sql.api.java.UDF2[_, _, _],returnType: org.apache.spark.sql.types.DataType)org.apache.spark.sql.expressions.UserDefinedFunction <and>
  (f: org.apache.spark.sql.api.java.UDF1[_, _],returnType: org.apache.spark.sql.types.DataType)org.apache.spark.sql.expressions.UserDefinedFunction <and>
  (f: org.apache.spark.sql.api.java.UDF0[_],returnType: org.apache.spark.sql.types.DataType)org.apache.spark.sql.expressions.UserDefinedFunction <and> ...

另一方面,如果我创建一个临时视图并使用spark.sql,则它如下所示的运行情况非常好

df.createOrReplaceTempView("data")
val result = spark.sql(
    s"""
    SELECT *, new_col(col1, col2, ..., col12) AS new_col FROM data
    """
    )

我想念什么吗?使这种查询在spark / scala中工作的方式是什么?

1 个答案:

答案 0 :(得分:1)

注册DataFramesSparkSQL中使用的UDF的方式有多种

要在Spark Sql中使用,udf应该注册为

spark.sqlContext.udf.register("function_name", function)

要在DataFrames

中使用
val my_udf = org.apache.spark.sql.functions.udf(function)

在使用spark.sqlContext.udf.register时,它在Spark SQL中可用。

编辑: 下面的代码应该可以工作,我只使用了2个col位,它最多可以工作22个cols

val new_col :(String, String) => Boolean = (col1: String, col2: String) => {
  true
}

val new_col_udf = udf(new_col)
spark.sqlContext.udf.register("new_col", new_col)

var df = Seq((1,2,3,4,5,6,7,8,9,10,11)).toDF()
df.createOrReplaceTempView("data")
val result = spark.sql(
  s"""SELECT *, new_col(_1, _2) AS new_col FROM data"""
)
result.show()
df = df.withColumn("test", new_col_udf($"_1",$"_2") )
df.show()