在Keras中添加自定义均方根误差

时间:2019-04-20 03:48:44

标签: python keras

我正在尝试在Keras中编写RMSE函数,该函数仅对不为零的数组值运行RMSE。我有两个数组arr1和arr2。两个数组在完全相同的位置都为零(因此它们对RMSE值贡献为零)。但是,我需要将要除以arr1(或arr2)中非零值的数量更改为数字

def root_mean_squared_error(y_true, y_pred):
    nonzero = tf.count_nonzero(y_pred)
   num_zeros=tf.reduce_sum(tf.where(tf.not_equal(y_pred,0),tf.ones_like(y_pred),tf.zeros_like(y_pred))) 
    return K.sqrt((K.sum(K.square(y_pred - y_true))/tf.cast(nonzero, tf.float32)))

mc = keras.callbacks.ModelCheckpoint('modelsPerEpoch/weights{epoch:06d}.hdf5', 
                                     save_weights_only=False, 
                                     period=1)

decay_learner = ValidationLearningRateScheduler()

main_input = Input(shape=(None, 2, 100, 100), dtype='float32', name='input')

mask=Input(shape=(1, 100, 100), dtype='float32', name='mask')

hidden = ConvLSTM2D(filters=16, 
                    kernel_size=(5, 5),  
                    padding='same',  
                    return_sequences=False, 
                    data_format='channels_first')(main_input)

output = Conv2D(filters=1, 
                kernel_size=(1, 1), 
                padding='same',
                activation='sigmoid',
                kernel_initializer='glorot_uniform',
                data_format='channels_first',
                name='output')(hidden)

output_with_mask=Multiply()([output, mask])

sgd = SGD(lr=0.002, momentum=0.0, decay=0.0, nesterov=False)

model = Model(inputs=[main_input, mask], outputs=output_with_mask)

model.compile(optimizer=sgd,
              loss=root_mean_squared_error,
              metrics=[metrics.mse, root_mean_squared_error])

但是,当我运行此命令时,在命令行中返回“ inf”。我该如何解决?

1 个答案:

答案 0 :(得分:1)

根据您的代码,

y_truey_pred在完全相同的位置具有零是无效的。您在命令行中获得inf,因为y_pred中的非零数字为0,即您的代码中nonzero = 0。您应该计算正确的非零数字,并避免被以下代码除以0。

def root_mean_squared_error(y_true, y_pred):
    nonzero = tf.count_nonzero(y_true)
    ...
    return K.switch(K.equal(nonzero,0)
                    , K.constant(value=0.)
                    , K.sqrt((K.sum(K.square(y_pred - y_true))/tf.cast(nonzero, tf.float32))))