通常,我必须从我的C ++代码中调用一些Fortran例程。就我而言,C标头始终可用,并且包含诸如
double fFortran(int* a, int* b, double* someArray, int* sizeOfThatArray)
我的问题是:是否可以编写通用的C ++ 14包装器fortranCall
(也许使用模板元编程)
它会在必要时获取地址,然后调用fortran函数
像这样
double someArray[2] = {1, 4};
double result = fortranCall(fFortran, 4, 5, someArray,
sizeof(someArray) / sizeof(someArray[0]));
应等于
double someArray[2] = {1, 4};
int sizeOfSomeArray = sizeof(someArray) / sizeof(someArray[0]);
int a = 4;
int b = 5;
double result = fFortran(&a, &b, someArray, &sizeOfSomeArray);
我认为正确的解决方案涉及参数包,但我无法弄清楚如何迭代一个参数包并在需要时获取引用。
答案 0 :(得分:3)
对于这个答案,我将做以下假设:
fortranCall
函数的参数中获取指针地址。示例调用:
// So, given function signature
double fFortran(int* a, int* b, double* someArray, int* sizeOfThatArray);
// we would like to call with:
fortranCall(fFortran, 4, 5, someArray);
// Likewise, given
fFortranTwoArrays(double* arrayA, int* size_of_A, double* arrayB, int* size_of_B);
// we would like to call with
fortranCall(fFortranTwoArrays, someArray, some_other_Array);
以下程序将进行调用,如上所示:
#include <tuple>
#include <type_traits>
// Functions to call eventually
double fFortran(int* a, int* b, double* someArray, int* sizeOfThatArray)
{
return 0.0;
}
double fFortranTwoArrays(double* arrayA, int* size_of_A, double* arrayB, int* size_of_B)
{
return 0.0;
}
// If T is an array
// then make a std::tuple with two parameters
// pointer to first of T and
// pointer to extent of T
template<
typename T,
typename std::enable_if <
std::is_array<T>{},
int
>::type Extent = std::extent<T>::value,
typename Ptr = typename std::decay<T>::type
>
auto make_my_tuple(T& t)
{
static auto extent = Extent;
Ptr ptr = &t[0];
return std::make_tuple(ptr, &extent);
}
// If T is not an array
// then make a std::tuple with a single parameter
// pointer to T
template<typename T,
typename std::enable_if <
!std::is_array<T>{},
int
>::type = 0
>
auto make_my_tuple(T& t)
{
return std::make_tuple(&t);
}
template<typename F, typename... Targs>
auto fortranCall(F& f, Targs&& ... args)
{
// Make a single tuple with all the parameters.
auto parameters = std::tuple_cat(make_my_tuple(args)...);
// Arrays were each expanded to
// two pointer parameters(location and size).
// Other parameters will pass as a single pointer
return std::apply(f,parameters);
}
int main()
{
double someArray[2] = {1, 4};
double result = fortranCall(fFortran, 4, 5, someArray);
double some_other_Array[] = {6,7,8,9,10};
auto result2 = fortranCall(fFortranTwoArrays, someArray, some_other_Array);
}
std :: apply是C ++ 17。如果要使其在C ++ 14中工作,请使用https://en.cppreference.com/w/cpp/utility/apply
中的示例实现namespace detail {
template <class F, class Tuple, std::size_t... I>
constexpr decltype(auto) apply_impl(F&& f, Tuple&& t, std::index_sequence<I...>)
{
return std::invoke(std::forward<F>(f), std::get<I>(std::forward<Tuple>(t))...);
}
} // namespace detail
template <class F, class Tuple>
constexpr decltype(auto) apply(F&& f, Tuple&& t)
{
return detail::apply_impl(
std::forward<F>(f), std::forward<Tuple>(t),
std::make_index_sequence<std::tuple_size<std::remove_reference_t<Tuple>>::value>{});
}
并使用Martin Moene(https://github.com/martinmoene/invoke-lite)从后台的调用