Python-从数据框构建摘要数据框

时间:2019-04-19 01:24:34

标签: python pandas dataframe

我有一个这样的数据框,

DataFrame_A

Employee ID   A_ Status  C_Code  TestCol   Result_A  Result_B
20000         Yes        USA      asdasdq  True      False
20001         No         BRA      asdasdw  True      True
200002                   USA      asdasda  True      True 
200003        asda       MEX      asdasar  False     False

在此数据框中,Result_A和Result_B是布尔列。

我想通过一个函数构建一个摘要数据框,以便我可以重复使用。

我需要在数据框中添加以下列,并且Result_A的输出如下所示,而Result_B的另一个布尔值列将是摘要数据框的下一行。 < / p>

 Name of the Column     No. of Records     No. of Employees    True_Records    False_Records     A_Status_Yes  A_Status_No     Mex_True      Mex_False      USA_True     USA_False
         Result_A              4               4                    3                     1                1            1               0            1              2              2  

还要注意,员工ID有时可能是EMPLOYEE ID或Employee_ID或EMPLOYEE_ID或EMPL_ID。因此,列表需要在python内部,并且其中只有一个会出现在函数内部

我实时拥有25个数据帧,因此正在寻找可以重用和附加的功能。

请帮助我。

1 个答案:

答案 0 :(得分:1)

我想我得到了你想要的:

1-重新创建您的df

df = pd.DataFrame({"Employee ID": [20000, 20001, 200002, 200003],
                  "A_ Status": ["Yes", "No", np.nan, "asda"],
                  "C_Code": ["USA", "BRA", "USA", "MEX"],
                  "TestCol": ["asdasdq", "asdasdw", "asdasda", "asdasar"],
                  "Result_A": [True, True, True, False],
                  "Result_B": [False, True, True, False]}, 
                  columns=["Employee ID", "A_ Status", "C_Code", "TestCol", "Result_A", "Result_B"])

2-创建第二个数据框df2

df2 = pd.DataFrame(columns=["Name of the Column","No. of Records","No. of Employees","True_Records","False_Records","A_Status_Yes","A_Status_No","Mex_True","Mex_False","USA_True","USA_False"])

3-计算结果:

for column in df.columns[4:]: # For each columns of name pattern `Result_xx`
    print(column)
    a = [column,
        len(df["Employee ID"]), # Not sure about this one
        len(df["Employee ID"]),
        len(df[df[column] == True]),
        len(df[df[column] == False]),
        len(df[df["A_ Status"] == "Yes"]),
        len(df[df["A_ Status"] == "No"]),
        len(df[(df["C_Code"] == "MEX") & (df[column] == True)]),
        len(df[(df["C_Code"] == "MEX") & (df[column] == False)]),
        len(df[(df["C_Code"] == "USA") & (df[column] == True)]),
        len(df[(df["C_Code"] == "USA") & (df[column] == False)])
       ] # Create line as list

    df2.loc[len(df2), :] = a # Append line

4-结果:

+----+----------------------+------------------+--------------------+----------------+-----------------+----------------+---------------+------------+-------------+------------+-------------+
|    | Name of the Column   |   No. of Records |   No. of Employees |   True_Records |   False_Records |   A_Status_Yes |   A_Status_No |   Mex_True |   Mex_False |   USA_True |   USA_False |
|----+----------------------+------------------+--------------------+----------------+-----------------+----------------+---------------+------------+-------------+------------+-------------|
|  0 | Result_A             |                4 |                  4 |              3 |               1 |              1 |             1 |          0 |           1 |          2 |           0 |
|  1 | Result_B             |                4 |                  4 |              2 |               2 |              1 |             1 |          0 |           1 |          1 |           1 |
+----+----------------------+------------------+--------------------+----------------+-----------------+----------------+---------------+------------+-------------+------------+-------------+