配对t检验的问题:并非所有参数的长度都相同

时间:2019-04-19 01:19:04

标签: r

我想对数据框进行配对t检验。我认为我将它们正确分组,但不知道为什么会报告错误: complete.cases(x,y)错误:并非所有参数的长度都相同。

centre_g是我的数据框,其中包含我要在分析中使用的所有信息。配对的t检验是正确的方法。

str(centre_g)
# Classes ‘grouped_df’, ‘tbl_df’, ‘tbl’ and 'data.frame':   
# 24 obs. of  17 variables 
# (I will only list two variables that is used for my anaysis):
# $ BA: Factor w/ 2 levels "after","before": 2 1 2 1 2 1 2 1 2 1 ...
# $ Pb: num  437 1183 1465 3105 NA ...

我曾经提取过“ Pb”的“ before”和“ after”,即我在数据帧中提取了两个向量,并进行了配对t检验,效果很好

(tResult <- t.test(before$Pb, after$Pb, paired = TRUE)) 

但是当我尝试直接在数据框上进行配对t检验时,它有问题中提到的错误消息

(tResult <- t.test(Pb ~ BA, data = centre_g, paired = TRUE))

我尝试了几次,使用分组数据或排序数据。我不知道第二种方法有什么问题。是否因为我在数据框中获得的NA值?但是第一种方法很好吗?

由于我的数据框中有很多信息需要分析,因此我不想为每个矢量提取向量。我希望在数据框上进行配对的t检验。有人可以帮我吗?

center_g的详细信息是:

structure(list(day = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), SAMPLE.No = structure(c(1L, 
13L, 15L, 17L, 19L, 21L, 23L, 25L, 27L, 3L, 5L, 7L, 9L, 11L, 
1L, 13L, 15L, 17L, 19L, 21L, 23L, 25L, 27L, 3L), .Label = c("s1", 
"s1.2", "s10", "s10.2", "s11", "s11.2", "s12", "s12.2", "s13", 
"s13.2", "s14", "s14.2", "s2", "s2.2", "s3", "s3.2", "s4", "s4.2", 
"s5", "s5.2", "s6", "s6.2", "s7", "s7.2", "s8", "s8.2", "s9", 
"s9.2"), class = "factor"), weir = c(1L, 1L, 2L, 2L, 3L, 3L, 
4L, 4L, 5L, 5L, 6L, 6L, 7L, 7L, 8L, 8L, 9L, 9L, 10L, 10L, 11L, 
11L, 12L, 12L), BA = structure(c(2L, 1L, 2L, 1L, 2L, 1L, 2L, 
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 
1L), .Label = c("after", "before"), class = "factor"), centre.bank = structure(c(2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("bank", "centre"), class = "factor"), 
    Pb = c(436.65, 1182.93, 1465.21, 3105.36, 39.1, 1493.91, 
    NA, 165.28, 38.83, 351.48, 80.26, 47.39, 151.27, 434.01, 
    -97.58, 240.83, 56.8, 40.24, 38.8, NA, 41.13, 38.93, 44.39, 
    39.05), Pb.Error = c(16.41, 30.01, 51.26, 102.44, 27.21, 
    79.63, NA, 13.82, 48.78, 16.71, 19.1, 21.43, 18.65, 21.41, 
    232.7, 18.83, 12.19, 15.28, 11.94, NA, 22.24, 14.01, 10.56, 
    9.63), Zn = c(542.52, 981.83, 1234.78, 7554.41, 529.38, 5240.01, 
    NA, 542.65, 526.08, 820.87, 649.7, 793.42, 707.23, 1204.3, 
    -34.56, 209.86, 172.5, 130.29, 187.96, NA, 234.57, 137.38, 
    165.21, 135.05), Zn.Error = c(19.5, 29.31, 48.12, 161.54, 
    42.36, 144.56, NA, 23.37, 52.5, 26.18, 33.33, 39.87, 31.89, 
    35.79, 44.83, 17.24, 15.11, 21.25, 19.76, NA, 26.65, 18.67, 
    15.12, 13.97), Fe = c(3731.23, 14239.54, 23774.52, 52349.37, 
    3896.63, 13311.26, NA, 2756.96, 3511.06, 2664.12, 2383.16, 
    2785.75, 2834.59, 6288.39, -321.14, 14704.05, 3825.8, 5017.52, 
    13181.67, NA, 31190.39, 8516.23, 14130, 18348.01), Fe.Error = c(106.82, 
    229.87, 432.59, 884.29, 239.03, 496.1, NA, 111.92, 283.9, 
    102.44, 137.69, 161.02, 137.66, 172.32, 187.37, 274.6, 140.64, 
    240.97, 310.62, NA, 565.41, 265.57, 260.75, 291.45), Mn = c(110.65, 
    1337.08, 1126.82, 3495.03, 410.99, 5267.34, NA, 314.42, 338.8, 
    591.99, 308.46, 427.59, 573.87, 896.23, 277.82, 421.17, 969.72, 
    535.07, 879.97, NA, 742.39, 350.62, 379.98, 834.36), Mn.Error = c(43.39, 
    93.86, 133.34, 297.53, 125.08, 410.14, NA, 63.25, 155.08, 
    68.16, 82.1, 96.34, 88.97, 89.89, 1470.88, 78, 92.24, 118.6, 
    112.32, NA, 134.87, 91.97, 72.7, 91.12), Cr = c(-38.15, 50.8, 
    25.9, 53.32, 21.52, 132.82, NA, 8.13, 5.46, 35.07, 93.78, 
    88.18, 71.23, 47.26, 32.91, 25.49, 10.36, 19.99, 5.13, NA, 
    32.61, 22.13, 47.5, -5.82), Cr.Error = c(9.05, 16.41, 7.7, 
    9.99, 4.58, 33.88, NA, 7.84, 2.86, 9.18, 8.75, 7.55, 7.98, 
    9.62, 6.38, 5.54, 6.72, 4.6, 6.5, NA, 6.64, 4.62, 9.51, 11.3
    ), Ca = c(32195.21, 46510.98, 21723.24, 17820.74, 14639.01, 
    45937.9, NA, 37840.08, 4704.64, 37705.36, 28625.21, 25115.24, 
    41579.19, 91829.16, 19752.96, 14605.4, 34654.73, 15798.87, 
    13873.07, NA, 22901.14, 4097.09, 12053.38, 276525.69), Ca.Error = c(211.2, 
    326.69, 160.54, 142.76, 120.63, 304.76, NA, 219.4, 66.28, 
    225.41, 187.03, 169.88, 226.15, 378.53, 149.92, 125.47, 208.18, 
    127.73, 127.4, NA, 168.31, 64.51, 128.02, 908.61)), row.names = c(1L, 
4L, 6L, 8L, 10L, 12L, 13L, 16L, 17L, 19L, 21L, 23L, 26L, 28L, 
29L, 32L, 34L, 36L, 38L, 39L, 42L, 43L, 46L, 48L), class = "data.frame")

我有兴趣在“ Pb”列上进行配对t检验,试图比较“ before”和“ after”(如“ BA”列中所示)。每个“怪人”都是个人。

1 个答案:

答案 0 :(得分:0)

一天后,我已经完成了我们的工作。我发现这是因为一行NA数据。在某些地方,我无法进行采样,因此似乎有一整行的NA数据(因子列除外)。

要确保数据帧具有整个长度(24而不是23),并且不忽略NA数据,则在将数据帧设置为center_g时添加na.rm = FALSE。

#include "config.h"

    .section .data
dummy:  .byte 0     ; dummy global variable

        .section .text
        .global     main
        .extern     delay          
        .org        0x0000

main:
    ; clear the SREG register
        eor     r1, r1                  ; cheap zero
        out     _(SREG), r1                ; clear flag register


        ; set up the stack
        ldi         r28, (RAMEND & 0x00ff)
        ldi         r29, (RAMEND >> 8)
        out         _(SPH), r29
        out         _(SPL), r28

    ; initialize the CPU clock to run at full speed
    ldi         r24, 0x80
        sts         CLKPR, r24              ; allow access to clock setup
        sts         CLKPR, r1               ; run at full speed

        ; set up the LED port
        sbi         LED_DIR, LED_PIN        ; set LED pin to output
        cbi         LED_PORT, LED_PIN       ; start with the LED off


        ; enter the blink loop
1:      rcall       toggle
        rcall       delay
        rcall       delay2
        rjmp        1b

toggle:
        in          r24, LED_PORT           ; get current bits
        ldi         r25, (1 << LED_PIN)     ; LED is pin 5
        eor         r24, r25                ; flip the bit
        out         LED_PORT, r24           ; write the bits back
        ret

delay:                      ; 1/2 sec delay loop
        ldi         r21, 41
        ldi         r22, 150
        ldi         r23, 127
1:      dec         r23
        brne        1b
        dec         r22
        brne        1b
        dec         r21
        brne        1b
        ret

delay2:                     ; 1 sec delay loop
        ldi         r18, 82
        ldi         r19, 43
        ldi         r20, 0
2:      dec         r20
        brne        2b
        dec         r19
        brne        2b
        dec         r18
        brne        2b
        ret

(我想我在问题数据集中给出了正确的center_g,但偶尔我只得到23个数据。添加na.rm以确保如何处理NA数据)

进行配对t检验时,还要添加na.rm = FALSE。

centre_g <- subset(HM_selected, centre.bank == "centre", na.rm = FALSE)

这对我来说非常合适。

  • 对不起,如果您有任何疑问