熊猫分组滚动平均值与自定义窗口大小

时间:2019-04-18 20:45:13

标签: python pandas pandas-groupby

问题定义:

对于Pandas DataFrame,我试图通过滚动均值进行分组,并在每行中指定相对于日期时间索引的可变窗口大小。

示例:

对于以下每周df数据:

| week_start_date | material | location | quantity | window_size |
|-----------------|----------|----------|----------|-------------|
| 2019-01-28      | C        | A        | 870      | 1           |
| 2019-02-04      | C        | A        | 920      | 3           |
| 2019-02-18      | C        | A        | 120      | 1           |
| 2019-02-25      | C        | A        | 120      | 2           |
| 2019-03-04      | C        | A        | 120      | 1           |
| 2018-12-31      | D        | A        | 1200     | 8           |
| 2019-01-21      | D        | A        | 720      | 8           |
| 2019-01-28      | D        | A        | 480      | 8           |
| 2019-02-04      | D        | A        | 600      | 8           |
| 2019-02-11      | D        | A        | 720      | 8           |
| 2019-02-18      | D        | A        | 80       | 8           |
| 2019-02-25      | D        | A        | 600      | 8           |
| 2019-03-04      | D        | A        | 1200     | 8           |
| 2019-01-14      | E        | B        | 150      | 1           |
| 2019-01-28      | E        | B        | 1416     | 1           |
| 2019-02-04      | F        | B        | 1164     | 1           |
| 2019-01-28      | G        | B        | 11520    | 8           |

该窗口需要相对于week_start_date中设置的实际日期,而不是像整数索引一样对待。

它需要按materiallocation分组。

滚动平均值用于quantity列。

窗口大小需要根据window_size列中的值进行更改。该值随时间变化-它表示需要汇总数量的时间倒退的周数。

当某行不可用时,平均值应假定该值为0,即: 当没有星期日期的行时 mean(null, null, null, 1000) = 1000 但实际上应该: 平均值(0,0,0,1000)= 250 但是-仅在对首次观测值进行测量后才适用。

相对于日期列的固定窗口:

我可以使用以下方法获得为期8周(56天)的静态窗口:

df.set_index('week_start_date').groupby(['material', 'location'])['quantity'].rolling('56D', min_periods=1).mean()

我已经尝试使用expanding,但没有成功。

如何相对于读取的每一行设置窗口大小?

样本数据:

# Example Data
df = pd.DataFrame({'week_start_date': ['2019-01-28','2019-02-04','2019-02-18','2019-02-25','2019-03-04','2018-12-31','2019-01-21','2019-01-28','2019-02-04','2019-02-11','2019-02-18','2019-02-25','2019-03-04','2019-01-14','2019-01-28','2019-02-04','2019-01-28'],
'material': ['C','C','C','C','C','D','D','D','D','D','D','D','D','E','E','F','G'],
'location': ['A','A','A','A','A','A','A','A','A','A','A','A','A','B','B','B','B'],
'quantity': ['870','920','120','120','120','1200','720','480','600','720','80','600','1200','150','1416','1164','11520'],
'min_of_pdt_or_8_weeks': ['1','3','1','2','1','8','8','8','8','8','8','8','8','1','3','1','8']})
# Fix formats
df['week_start_date'] = pd.to_datetime(df['week_start_date'])
df['actual_week_qty'] = df['quantity'].astype(float)

预期结果:

| material | location | week_start_date | quantity | 
| C        | A        | 2019-01-28      | 870      | 
| C        | A        | 2019-04-02      | 306.6667 | 
| C        | A        | 2019-02-18      | 520      | 
| C        | A        | 2019-02-25      | 386.6667 | 
| D        | A        | 2018-12-31      | 1200     | 
| D        | A        | 2019-01-21      | 960      | 
| D        | A        | 2019-01-28      | 800      | 
| D        | A        | 2019-04-02      | 600      | 
| D        | A        | 2019-11-02      | 720      | 
| D        | A        | 2019-02-18      | 400      | 
| D        | A        | 2019-02-25      | 466.6667 | 
| D        | A        | 2019-04-03      | 650      | 
| E        | B        | 2019-01-14      | 150      | 
| E        | B        | 2019-01-28      | 783      | 
| F        | B        | 2019-04-02      | 1164     | 
| G        | B        | 2019-01-28      | 11520    |

1 个答案:

答案 0 :(得分:0)

您可能会这样做的天真的方法是进行8次计算(假设这是有界的!)并合并结果:

In [11]: d = {w: df.set_index('week_start_date')
                   .groupby(['material', 'location'])['quantity']
                   .rolling(f'{7*w}D', min_periods=1)
                   .mean()
                   .reset_index(name="mean")
                   .assign(window_size=w)
              for w in range(1, 9)}

然后,您可以将这些DataFrame合并在一起并与原始DataFrame合并,因为我们在左右两侧都有window_size列,该列位于其内部。

In [12]: pd.concat(d.values()).merge(df, how="inner")
Out[12]:
   material location week_start_date          mean  window_size  quantity
0         C        A      2019-01-28    870.000000            1     870.0
1         C        A      2019-02-18    520.000000            1     120.0
2         C        A      2019-04-03    320.000000            1     120.0
3         E        B      2019-01-14    150.000000            1     150.0
4         F        B      2019-04-02   1164.000000            1    1164.0
5         C        A      2019-02-25    386.666667            2     120.0
6         C        A      2019-04-02    920.000000            3     920.0
7         E        B      2019-01-28    783.000000            3    1416.0
8         D        A      2018-12-31   1200.000000            8    1200.0
9         D        A      2019-01-21    960.000000            8     720.0
10        D        A      2019-01-28    800.000000            8     480.0
11        D        A      2019-04-02    600.000000            8     600.0
12        D        A      2019-11-02    720.000000            8     720.0
13        D        A      2019-02-18    400.000000            8      80.0
14        D        A      2019-02-25    466.666667            8     600.0
15        D        A      2019-04-03    650.000000            8    1200.0
16        G        B      2019-01-28  11520.000000            8   11520.0

注意:假设您已将window_size的fillna设置为8:

df.window_size = df.window_size.replace('NaN', 8).astype(int)  # in your example

此外,您想确保将格式传递给to_datetime以确保不会出现歧义,大熊猫也许在这里可以做得很好……但是我不会不能依赖它(显式使用format='%d/%m/%Y)。您希望在读完日期后就摆脱奇怪的日期格式,也可以将其传递给read_csv(dayfirst = True)和朋友。


我并不完全相信这是您想要的,因为您输入的df和预期值之间存在差异(例如,预期值中没有G B)。

无论如何,我怀疑只有一个拍摄方法可以做到这一点,但是这取决于周/物料/位置的稀疏性(如果密密麻麻的话,它会容易得多,如果稀疏,这可能是最好的选择)...
现在我考虑一下,您可以完全在材质/位置subDataFrame上执行此操作,是否可以将这个问题简化为该DataFrame的函数(只是周+忽略材质/位置的值),或者应用速度太慢? / p>