如何使用Bert生成嵌入

时间:2019-04-18 19:26:22

标签: python tensorflow nlp embedding

我开始使用以下Kaggle内核:

之后,我使用了将近的以下代码:

bert_config = modeling.BertConfig.from_json_file(bert_config_file)

processor = ColaProcessor()
label_list = processor.get_labels()

tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file, do_lower_case=do_lower_case)

tpu_cluster_resolver = None
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2

train_examples = processor.get_train_examples(data_dir)
num_train_steps = int(len(train_examples) / train_batch_size * num_train_epochs)
num_warmup_steps = int(num_train_steps * warmup_proportion)

print("Feature Test")
features = convert_examples_to_features(examples=train_examples, label_list=label_list, max_seq_length=max_seq_length, tokenizer=tokenizer)
print("Feature Test Completed")

执行此操作后,我的features变量得到以下输出:

 <run_classifier.InputFeatures at 0x7f798eece780>,
 <run_classifier.InputFeatures at 0x7f798eefd7b8>,
 <run_classifier.InputFeatures at 0x7f798eece5c0>,
 <run_classifier.InputFeatures at 0x7f798eecec18>,
 <run_classifier.InputFeatures at 0x7f798eece978>,
 <run_classifier.InputFeatures at 0x7f798eeced68>,
 <run_classifier.InputFeatures at 0x7f798eece208>,
 <run_classifier.InputFeatures at 0x7f798eecea58>,

我的困惑是如何将其转换为可用于其他任务的嵌入数组。我可能会错过伯特的工作方式。

0 个答案:

没有答案