我试图在每个带有'NN
'标签的元组中提取第0个元素。只想提取针对标签的单词。例如。每行:
train['Tag'] = [('unclear', 'JJ'), ('incomplete', 'JJ'), ('instruction', 'NN'), ('given', 'VBN')]
我尝试使用where子句在每个元组中提取第一个元素
train['Tagged2']= [x[0] for x in train['Tag'] if x[1] in ("NN")]
预期结果,新列包含带有NN
标签的单词的每一行,在示例中,此处将是单词'instruction
'
答案 0 :(得分:1)
==
:
如果两个操作数的值相等,则条件变为 是的。
in
:
如果找到指定序列中的变量,则计算为true,然后 否则为假。
因此:
使用比较运算符==
代替in
:
tt = [('unclear', 'JJ'), ('incomplete', 'JJ'), ('instruction', 'NN'), ('given', 'VBN')]
print([t[0] for t in tt if t[1] == 'NN'])
输出:
['instruction']
编辑:
自从您更新了问题:
train = {} # Assuming that you're working with associative arrays i.e. dict in Py
train['Tag'] = [('unclear', 'JJ'), ('incomplete', 'JJ'), ('instruction', 'NN'), ('given', 'VBN')]
print([t[0] for t in train['Tag'] if t[1] == 'NN'])
输出:
['instruction']
答案 1 :(得分:1)
由于您必须根据条件创建新的pandas
列,因此您可以使用以下代码过滤出带有标签NN
的单词
df = pd.DataFrame()
df['Tag'] = [('unclear', 'JJ'), ('incomplete', 'JJ'), ('instruction', 'NN'), ('given', 'VBN')]
# create 2 separate columns with tags and words
df['words'] = [i[0] for i in df['Tag']]
df['tags'] = [i[1] for i in df['Tag']]
# use np.where to find tags with `NN`
df['Tagged2'] = np.where(df['tags']=='NN', df['words'], np.nan)
df.drop(['words','tags'],1,inplace=True)
print(df)
输出:
Tag Tagged2
0 (unclear, JJ) NaN
1 (incomplete, JJ) NaN
2 (instruction, NN) instruction
3 (given, VBN) NaN
答案 2 :(得分:0)
none()