如何修复整洁的recurrent.py文件,整洁的python库openAI Gym

时间:2019-04-17 13:58:05

标签: python machine-learning openai-gym neat

试图使python整洁算法与openAI Gym retro配合使用。 我在youtube上使用python3:https://www.youtube.com/watch?v=8dY3nQRcsac&list=PLTWFMbPFsvz3CeozHfeuJIXWAJMkPtAdS&index=8&t=410s 试图在openAI的环境中与音速一起工作。似乎recrrent.py文件有问题。

在此处找到代码:https://gitlab.com/lucasrthompson/Sonic-Bot-In-OpenAI-and-NEAT/blob/master/tut2.py

这是错误消息


    File "tut3.py", line 53, in <module>
        winner = p.run(eval_genomes)
      File "/home/gym/OPAI/lib/python3.6/site-packages/neat/population.py", line 89, in run
        fitness_function(list(iteritems(self.population)), self.config)
      File "tut3.py", line 41, in eval_genomes
        imgarray.append(y)
    AttributeError: 'numpy.ndarray' object has no attribute 'append'

人口.py文件中的第89行


    self.reporters.start_generation(self.generation)

                # Evaluate all genomes using the user-provided function.
                fitness_function(list(iteritems(self.population)), self.config)



我从@lucas获得的tut3代码 只需计划整洁的网络即可。


import retro
import numpy as np
import pickle
import neat
import cv2

env = retro.make('SonicTheHedgehog-Genesis', 'GreenHillZone.Act1')

imgarray = []

def eval_genomes(genomes, config):

    for genome_id, genome in genomes:
        ob = env.reset()
        ac = env.action_space.sample()

    inx, iny, inc = env.observation_space.shape

    inx = int(inx/8)
    iny = int(iny/8)

    net = neat.nn.RecurrentNetwork.create(genome, config)
    current_max_fitness = 0
    fitness_current = 0
    frame = 0
    counter = 0
    xpos = 0
    xpos_max = 0

    done = False

    while not done:
            env.render()
            frame +=1
            ob = cv2.resize(ob, (inx,iny))
            ob = cv2.cvtColor(ob, cv2.COLOR_BGR2GRAY)
            ob = np.reshape(ob, (inx,iny))
            imgarray = np.ndarray.flatten(ob)
            for x in ob:
                for y in x:
                    imgarray.append(y)

                nnOutput = net.activate(imgarray)
                print(nnOutput)

                ob, rew,done, info = env.step(nnOutput)
                imgarray.clear()

config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction,
                     neat.DefaultSpeciesSet, neat.DefaultStagnation,
                     'config-feedforward')
p = neat.Population(config)
winner = p.run(eval_genomes)


如果你们能帮助的话会很棒。 我想完全理解这是一个学校项目。

感谢您的帮助 :))

1 个答案:

答案 0 :(得分:0)

您的while循环中有一些错误。使您的eval_genomes函数如下所示:

def eval_genomes(genomes, config):

    for genome_id, genome in genomes:
        ob = env.reset()
        ac = env.action_space.sample()

    inx, iny, inc = env.observation_space.shape

    inx = int(inx/8)
    iny = int(iny/8)

    net = neat.nn.RecurrentNetwork.create(genome, config)
    current_max_fitness = 0
    fitness_current = 0
    frame = 0
    counter = 0
    xpos = 0
    xpos_max = 0

    done = False

    while not done:
            env.render()
            frame +=1
            ob = cv2.resize(ob, (inx, iny))
            ob = cv2.cvtColor(ob, cv2.COLOR_BGR2GRAY)                             
            ob = np.reshape(ob, (inx,iny))
            imgarray = np.ndarray.flatten(ob)
            nnOutput = net.activate(imgarray)
            print(nnOutput)
            ob, rew,done, info = env.step(nnOutput)

ndarray.flatten与for x和for y循环具有相同的作用,因此您只需要两种解决方案之一,并且flatten易于阅读。另外,python是缩进真正重要的语言。始终确保您的标签页/空格正确对齐!

希望有效。如果不是,请继续并使用它:

https://gitlab.com/lucasrthompson/Sonic-Bot-In-OpenAI-and-NEAT/blob/master/tut2.py

或者这个:

https://gitlab.com/lucasrthompson/Sonic-Bot-In-OpenAI-and-NEAT/blob/master/neat-paralle-sonic.py

祝你好运!