此代码使用预测包进行预测。此代码的最终输出是使用snaive方法预测的三个列表(SNAIVE_PIT,SNAIVE_CIT和SNAIVE_VAT)。
#CODE
library(forecast)
# Making data frame
DATA_SET<-data.frame(
PIT=seq(1, 48, by = 2),
CIT=seq(1, 24, by = 1),
VAT=seq(1, 94, by = 4)
)
View(DATA_SET)
# FOR LOOP
for(i in 1:ncol(DATA_SET)){
# Build a ts for this column
timeseries <- ts(DATA_SET[,i], start=c(2016,1), frequency = 12)
# Build a foreacst based on the ts
forecast <- snaive(timeseries,h=5)
# rename the forecast according to the original variable name
colname <- colnames(DATA_SET)[i]
forecastName <- paste("SNAIVE_",colname," <- forecast",sep="")
eval(parse(text = forecastName))
}
但是编码并不以上述代码结尾。也就是说,我必须用一些其他东西来扩展此代码。
首先,如何将这一行添加到上面的代码中(FOR LOOP部分)?
#NEW CODE 1
SNAIVE_ALL<-mapply(SNAIVE_PIT, SNAIVE_CIT,SNAIVE_VAT, FUN=list, SIMPLIFY=FALSE)
第二,如何将这一行放入上面的代码中(FOR LOOP部分)?
#NEW CODE 2
SNAIVE_PIT_ACCURANCY<-accuracy(SNAIVE_PIT)
SNAIVE_CIT_ACCURANCY<-accuracy(SNAIVE_CIT)
SNAIVE_VAT_ACCURANCY<-accuracy(SNAIVE_VAT)
SNAIVE_ACCURANCY<-rbind(SNAIVE_PIT_ACCURANCY,SNAIVE_CIT_ACCURANCY,SNAIVE_VAT_ACCURANCY)
任何人都可以帮助我使用此代码吗?
答案 0 :(得分:0)
我个人认为您是以完全错误的方式执行此操作的,R代码并不是要一直生成和合并列表,您可以以功能性方式进行所有这些操作,首先您需要考虑一下列表结构会的。
我推荐以下结构
每个数据集都是一个列表,每个列表都接收一个生成两个列表(预测和准确性)的函数。
让我们的代码。
# I recommend spliting this function but I am lazy
prediction_funtion <- function(x) {
x <- ts(x, start=c(2016,1), frequency = 12)
model <- snaive(x)
forecasts_results <- forecast(model,5)
accuracy_results <- accuracy(model)
return(list(forecast = forecasts_results,accuracy =accuracy_results))
}
map(list_df,prediction_funtion)