(更新),我正在构建一个模块来分发基于代理的模型,其思想是将模型拆分为多个进程,然后在代理到达边界时将它们传递给处理该区域的处理器。我可以建立进程并在不进行通信的情况下工作,但是无法使数据通过管道传递并更新其他处理器上的模型段。
我已经尝试过stackoverflow的解决方案,并构建了该模型的简单版本。一旦将模型对象放入管道,模型就会挂起(它适用于python标准数据类型)。简单版本只是来回传递代理。
from pathos.multiprocessing import ProcessPool
from pathos.helpers import mp
import copy
class TestAgent:
"Agent Class-- Schedule iterates through each agent and \
executes step function"
def __init__(self, unique_id, model):
self.unique_id = unique_id
self.model = model
self.type = "agent"
def step(self):
pass
#print (' ', self.unique_id, "I have stepped")
class TestModel:
"Model Class iterates through schedule and executes step function for \
each agent"
def __init__(self):
self.schedule = []
self.pipe = None
self.process = None
for i in range(1000):
a = TestAgent(i, self)
self.schedule.append(a)
def step(self):
for a in self.schedule:
a.step()
if __name__ == '__main__':
pool = ProcessPool(nodes=2)
#create instance of model
test_model = TestModel()
#create copies of model to be run on 2 processors
test1 = copy.deepcopy(test_model)
#clear schedule
test1.schedule = []
#Put in only half the schedule
for i in range(0,500):
test1.schedule.append(test_model.schedule[i])
#Give process tracker number
test1.process = 1
#repeat for other processor
test2= copy.deepcopy(test_model)
test2.schedule = []
for i in range(500,1000):
test2.schedule.append(test_model.schedule[i])
test2.process = 2
#create pipe
end1, end2 = mp.Pipe()
#Main run function for each process
def run(model, pipe):
for i in range(5):
print (model.process)#, [a.unique_id for a in model.schedule])
model.step() # IT HANGS AFTER INITIAL STEP
print ("send")
pipe.send(model.schedule)
print ("closed")
sched = pipe.recv()
print ("received")
model.schedule = sched
pool.map(run, [test1, test2], [end1,end2])
代理应切换处理器并执行其打印功能。 (我的下一个问题将是同步处理器,使它们保持在每个步骤上,但一次只能做一件事。)
答案 0 :(得分:0)
我明白了。我超出了python中的管道缓冲区限制(8192)。如果代理拥有模型的副本作为属性,则尤其如此。下面是上面代码的有效版本,该版本一次通过代理。它使用Pympler来获取所有代理的大小。
from pathos.multiprocessing import ProcessPool
from pathos.helpers import mp
import copy
# do a blocking map on the chosen function
class TestAgent:
"Agent Class-- Schedule iterates through each agent and \
executes step function"
def __init__(self, unique_id, model):
self.unique_id = unique_id
self.type = "agent"
def step(self):
pass
class TestModel:
"Model Class iterates through schedule and executes step function for \
each agent"
def __init__(self):
from pympler import asizeof
self.schedule = []
self.pipe = None
self.process = None
self.size = asizeof.asizeof
for i in range(1000):
a = TestAgent(i, self)
self.schedule.append(a)
def step(self):
for a in self.schedule:
a.step()
if __name__ == '__main__':
pool = ProcessPool(nodes=2)
#create instance of model
test_model = TestModel()
#create copies of model to be run on 2 processors
test1 = copy.deepcopy(test_model)
#clear schedule
test1.schedule = []
#Put in only half the schedule
for i in range(0,500):
test1.schedule.append(test_model.schedule[i])
#Give process tracker number
test1.process = 1
#repeat for other processor
test2= copy.deepcopy(test_model)
test2.schedule = []
for i in range(500,1000):
test2.schedule.append(test_model.schedule[i])
test2.process = 2
#create pipe
end1, end2 = mp.Pipe()
#Main run function for each process
def run(model, pipe):
for i in range(5):
agents = []
print (model.process, model.size(model.schedule) )
model.step() # IT HANGS AFTER INITIAL STEP
#agent_num = list(model.schedule._agents.keys())
for agent in model.schedule[:]:
model.schedule.remove(agent)
pipe.send(agent)
agent = pipe.recv()
agents.append(agent)
print (model.process, "all agents received")
for agent in agents:
model.schedule.append(agent)
print (model.process, len(model.schedule))
pool.map(run, [test1, test2], [end1,end2])
迈克·麦克肯斯(Mike McKerns)和托马斯·莫罗(Thomas Moreau)-谢谢您为我提供的帮助。