将Python自定义方法设置为新变量会更改旧变量

时间:2019-04-17 11:46:12

标签: python pandas dataframe

我用两个方法NRG_loadNRG_flat创建了一个类。第一个加载CSV,将其转换为DataFrame并应用一些过滤;第二个获取此DataFrame,并在创建两列后melt使DataFrame进行旋转。

我正在使用以下代码尝试这些方法:

nrg105 = eNRG.NRG_load('nrg_105a.tsv')
nrg105_flat = eNRG.NRG_flat(nrg105, '105')

其中eNRG是类,并且需要使用'105'作为第二个参数来在方法中运行if循环以创建上述列。

我无法解释的行为是第二​​行-使用NRG_flat方法的第二行-更改了nrg105的值。

请注意,如果仅运行NRG_load方法,则会得到预期的DataFrame。

我缺少什么行为?因为这不是我第一次应用这样的语法,但是我从来没有遇到过问题,所以我不知道应该看什么。< / p>

预先感谢您的所有建议。

编辑:根据要求,以下是课程的代码:

# -*- coding: utf-8 -*-
"""
Created on Tue Apr 16 15:22:21 2019

@author: CAPIZZI Filippo Antonio
"""

import pandas as pd
from FixFilename import FixFilename as ff
from SplitColumn import SplitColumn as sc
from datetime import datetime as ddt


class EurostatNRG:
    # This class includes the modules needed to load and filter
    # the Eurostat NRG files

    # Default countries' lists to be used by the functions
    COUNTRIES = [
        'EU28', 'AL', 'AT', 'BE', 'BG', 'CY', 'CZ', 'DE', 'DK', 'EE', 'EL',
        'ES', 'FI', 'FR', 'GE', 'HR', 'HU', 'IE', 'IS', 'IT', 'LT', 'LU', 'LV',
        'MD', 'ME', 'MK', 'MT', 'NL', 'NO', 'PL', 'PT', 'RO', 'SE', 'SI', 'SK',
        'TR', 'UA', 'UK', 'XK'
    ]

    # Default years of analysis
    YEARS = list(range(2005, int(ddt.now().year) - 1))

    # NOTE: the 'datetime' library will call the current year, but since
    # the code is using the 'range' function, the end years will be always
    # current-1 (e.g. if we are in 2019, 'current year' will be 2018).
    # Thus, I have added "-1" because the end year is t-2.

    INDIC_PROD = pd.read_excel(
        './Datasets/VITO/map_nrg.xlsx',
        sheet_name=[
            'nrg105a_indic', 'nrg105a_prod', 'nrg110a_indic', 'nrg110a_prod',
            'nrg110'
        ],
        convert_float=True)

    def NRG_load(dataset, countries=COUNTRIES, years=YEARS, unit='ktoe'):
        # This module will load and refine the NRG dataset,
        # preparing it to be filtered

        # Fix eventual flags
        dataset = ff.fix_flags(dataset)

        # Load the dataset into a DataFrame
        df = pd.read_csv(
            dataset,
            delimiter='\t',
            encoding='utf-8',
            na_values=[':', ': ', ' :'],
            decimal='.')

        # Clean up spaces from the column names
        df.columns = df.columns.str.strip()

        # Removes the mentioned column because it's not needed
        if 'Flag and Footnotes' in df.columns:
            df.drop(columns=['Flag and Footnotes'], inplace=True)

        # Split the first column into separate columns
        df = sc.nrg_split_column(df)

        # Rename the columns
        df.rename(
            columns={
                'country': 'COUNTRY',
                'fuel_code': 'KEY_PRODUCT',
                'nrg_code': 'KEY_INDICATOR',
                'unit': 'UNIT'
            },
            inplace=True)

        # Filter the dataset
        df = EurostatNRG.NRG_filter(
            df, countries=countries, years=years, unit=unit)

        return df

    def NRG_filter(df, countries, years, unit):
        # This module will filter the input DataFrame 'df'
        # showing only the 'countries', 'years' and 'unit' selected

        # First, all of the units not of interest are removed
        df.drop(df[df.UNIT != unit.upper()].index, inplace=True)

        # Then, all of the countries not of interest are filtered out
        df.drop(df[~df['COUNTRY'].isin(countries)].index, inplace=True)

        # Finally, all of the years not of interest are removed,
        # and the columns are rearranged according to the desired output
        main_cols = ['KEY_INDICATOR', 'KEY_PRODUCT', 'UNIT', 'COUNTRY']
        cols = main_cols + [str(y) for y in years if y not in main_cols]
        df = df.reindex(columns=cols)

        return df

    def NRG_flat(df, name):
        # This module prepares the DataFrame to be flattened,
        # then it gives it as output

        # Assign the indicators and products' names
        if '105' in name:  # 'name' is the name of the dataset
            # Creating the 'INDICATOR' column
            indic_dic = dict(
                zip(EurostatNRG.INDIC_PROD['nrg105a_indic'].KEY_INDICATOR,
                    EurostatNRG.INDIC_PROD['nrg105a_indic'].INDICATOR))
            df['INDICATOR'] = df['KEY_INDICATOR'].map(indic_dic)
            # Creating the 'PRODUCT' column
            prod_dic = dict(
                zip(
                    EurostatNRG.INDIC_PROD['nrg105a_prod'].KEY_PRODUCT.astype(
                        str), EurostatNRG.INDIC_PROD['nrg105a_prod'].PRODUCT))
            df['PRODUCT'] = df['KEY_PRODUCT'].map(prod_dic)
        elif '110' in name:
            # Creating the 'INDICATOR' column
            indic_dic = dict(
                zip(EurostatNRG.INDIC_PROD['nrg110a_indic'].KEY_INDICATOR,
                    EurostatNRG.INDIC_PROD['nrg110a_indic'].INDICATOR))
            df['INDICATOR'] = df['KEY_INDICATOR'].map(indic_dic)
            # Creating the 'PRODUCT' column
            prod_dic = dict(
                zip(
                    EurostatNRG.INDIC_PROD['nrg110a_prod'].KEY_PRODUCT.astype(
                        str), EurostatNRG.INDIC_PROD['nrg110a_prod'].PRODUCT))
            df['PRODUCT'] = df['KEY_PRODUCT'].map(prod_dic)

        # Delete che columns 'KEY_INDICATOR' and 'KEY_PRODUCT', and
        # rearrange the columns in the desired order
        df.drop(columns=['KEY_INDICATOR', 'KEY_PRODUCT'], inplace=True)
        main_cols = ['INDICATOR', 'PRODUCT', 'UNIT', 'COUNTRY']
        year_cols = [y for y in df.columns if y not in main_cols]
        cols = main_cols + year_cols
        df = df.reindex(columns=cols)

        # Pivot the DataFrame to have it in flat format
        df = df.melt(
            id_vars=df.columns[:4], var_name='YEAR', value_name='VALUE')

        # Convert the 'VALUE' column into float numbers
        df['VALUE'] = pd.to_numeric(df['VALUE'], downcast='float')

        # Drop rows that have no indicators (it means they are not in
        # the Excel file with the products of interest)
        df.dropna(subset=['INDICATOR', 'PRODUCT'], inplace=True)

        return df

编辑2:如果可以,这是我在IPython中使用EurostatNRG类时收到的错误:

  

[EurostatNRG的自动重新加载失败:追溯(最近一次通话是最后一次):   文件   “ C:\ Users \ CAPIZZIF \ AppData \ Local \ Continuum \ anaconda3 \ lib \ site-packages \ IPython \ extensions \ autoreload.py”,   244行,在检查中       superreload(m,重新加载,self.old_objects)文件“ C:\ Users \ CAPIZZIF \ AppData \ Local \ Continuum \ anaconda3 \ lib \ site-packages \ IPython \ extensions \ autoreload.py”,   线394,在超级重载中       update_generic(old_obj,new_obj)文件“ C:\ Users \ CAPIZZIF \ AppData \ Local \ Continuum \ anaconda3 \ lib \ site-packages \ IPython \ extensions \ autoreload.py”,   update_generic中的第331行       更新(a,b)文件“ C:\ Users \ CAPIZZIF \ AppData \ Local \ Continuum \ anaconda3 \ lib \ site-packages \ IPython \ extensions \ autoreload.py”,   第279行,在update_class中       如果(old_obj == new_obj)为True:文件“ C:\ Users \ CAPIZZIF \ AppData \ Local \ Continuum \ anaconda3 \ lib \ site-packages \ pandas \ core \ generic.py”,   第1478行,非零       .format(self。 class name ))ValueError:DataFrame的真值不明确。使用a.empty,a.bool(),a.item(),a.any()或   a.all()。 ]

1 个答案:

答案 0 :(得分:1)

我设法找到了罪魁祸首。

NRG_flat方法中,行:

df['INDICATOR'] = df['KEY_INDICATOR'].map(indic_dic)
...
df['PRODUCT'] = df['KEY_PRODUCT'].map(indic_dic)

弄乱了df DataFrame的副本,因此我不得不用Pandas assign method来更改它们:

df = df.assign(INDICATOR=df.KEY_INDICATOR.map(prod_dic))
...
df = df.assign(PRODUCT=df.KEY_PRODUCT.map(prod_dic))

我再也没有错误。

谢谢您的回复!