在TensorFlow中读取与mnist数据集相同格式的新数据集

时间:2019-04-17 10:07:21

标签: python tensorflow tensorflow-datasets

我有一个深度学习模型,必须输入大小为100X100的图像。我拥有的数据是

火车图片-x_train (530,100,100), 火车标签-y_train (530,4)

测试图像-x_test(89,100,100), 测试标签-y_test(89,4)

使用-读取数据集mnist-

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

它会生成类似这样的内容-

Datasets(train=tensorflow.contrib.learn.python.learn.datasets.mnist.DataSet object at 0x7fd64cae76a0, 
validation=tensorflow.contrib.learn.python.learn.datasets.mnist.DataSet object at 0x7fd64cae7be0, 
test=tensorflow.contrib.learn.python.learn.datasets.mnist.DataSet object at 0x7fd64cae7400)

我必须以相同的格式转换数据,这样才能与我拥有的代码一起使用。请帮助

    epochs = 20
    batch_size = 100
    image_vector = 28*28


for i in range(epochs):
    training_accuracy = []
    epoch_loss = []

    for ii in tqdm(range(mnist.train.num_examples // batch_size)):

        batch = mnist.train.next_batch(batch_size)

        images = batch[0].reshape((-1, 28, 28))
        targets = batch[1]

        c, _, a = session.run([model.cost, model.opt, model.accuracy], feed_dict={model.inputs: images, model.targets:targets})

        epoch_loss.append(c)
        training_accuracy.append(a)

    print("Epoch: {}/{}".format(i, epochs), " | Current loss: {}".format(np.mean(epoch_loss)),
          " | Training accuracy: {:.4f}%".format(np.mean(training_accuracy)))

编辑1:  按照建议,我做了以下操作-

num_examples=271
batch_size=10
buffer_size=271
num_cpu_cores=4
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.shuffle(buffer_size, reshuffle_each_iteration=True).repeat()
#dataset = dataset.apply(tf.data.batch( batch_size=batch_size, num_parallel_batches=num_cpu_cores))

#batch1=dataset.batch(10)

iterator = dataset.make_one_shot_iterator()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for ii in tqdm(range(num_examples // batch_size)):
    batch = iterator.get_next()
    images = batch[0]
    targets = batch[1]

    c, _, a = sess.run([model.cost, model.opt, model.accuracy])

    epoch_loss.append(c)
    training_accuracy.append(a)

    print("Epoch: {}/{}".format(i, epochs), " | Current loss: {}".format(np.mean(epoch_loss)),
          " | Training accuracy: {:.4f}%".format(np.mean(training_accuracy)))

图像和目标不是批处理,而是单个图像和标签。

  

(,   )

请建议如何批量处理数据并将其输入sess.run

编辑2: 这是算法的全部代码-

def LSTM_layer(lstm_cell_units, number_of_layers, batch_size, dropout_rate=0.8):
    '''
    This method is used to create LSTM layer/s for PixelRNN

    Input(s): lstm_cell_unitis - used to define the number of units in a LSTM layer
              number_of_layers - used to define how many of LSTM layers do we want in the network
              batch_size - in this method this information is used to build starting state for the network
              dropout_rate - used to define how many cells in a layer do we want to 'turn off'

    Output(s): cell - lstm layer
               init_state - zero vectors used as a starting state for the network
    '''


    #layer = tf.contrib.rnn.BasicLSTMCell(lstm_cell_units)
    layer = tf.nn.rnn_cell.LSTMCell(lstm_cell_units,name='basic_lstm_cell')

    if dropout_rate != 0:
        layer = tf.contrib.rnn.DropoutWrapper(layer, dropout_rate)

    cell = tf.contrib.rnn.MultiRNNCell([layer]*number_of_layers)

    init_size = cell.zero_state(batch_size, tf.float32)

    return cell, init_size

def rnn_output(lstm_outputs, input_size, output_size):
    '''
    Output layer for the lstm netowrk

    Input(s): lstm_outputs - outputs from the RNN part of the network
              input_size - in this case it is RNN size (number of neuros in RNN layer)
              output_size - number of neuros for the output layer == number of classes

    Output(s) - logits, 
    '''


    outputs = lstm_outputs[:, -1, :]

    weights = tf.Variable(tf.random_uniform([input_size, output_size]), name='rnn_out_weights')
    bias = tf.Variable(tf.zeros([output_size]), name='rnn_out_bias')

    output_layer = tf.matmul(outputs, weights) + bias
    return output_layer

def loss_optimizer(rnn_out, targets, learning_rate):
    '''
    Function used to calculate loss and minimize it

    Input(s): rnn_out - logits from the fully_connected layer
              targets - targets used to train network
              learning_rate/step_size


    Output(s): optimizer - optimizer of choice
               loss - calculated loss function
    '''
    loss = tf.nn.softmax_cross_entropy_with_logits(logits=rnn_out, labels=targets)
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)
    return optimizer, loss
class PixelRNN(object):

    def __init__(self, learning_rate=0.001, batch_size=10, classes=4, img_size = (129, 251), lstm_size=64,
                number_of_layers=1, dropout_rate=0.6,clip_rate=None):

        '''
        PixelRNN - call this class to create whole model

        Input(s): learning_rate - how fast are we going to move towards global minima
                  batch_size - how many samples do we feed at ones
                  classes - number of classes that we are trying to recognize
                  img_size - width and height of a single image
                  lstm_size - number of neurons in a LSTM layer
                  number_of_layers - number of RNN layers in the PixelRNN 
                  dropout_rate - % of cells in a layer that we are stopping gradients to flow through
        '''

        #This placeholders are just for images
        self.inputs = tf.placeholder(tf.float32, [None, img_size[0], img_size[1]], name='inputs')
        self.targets = tf.placeholder(tf.int32, [None, classes], name='targets')

        cell, init_state = LSTM_layer(lstm_size, number_of_layers, batch_size, dropout_rate)

        outputs, states = tf.nn.dynamic_rnn(cell, self.inputs, initial_state=init_state)

        rnn_out = rnn_output(outputs, lstm_size, classes)

        self.opt, self.cost = loss_optimizer(rnn_out, self.targets, learning_rate)

        predictions = tf.nn.softmax(rnn_out)

        currect_pred = tf.equal(tf.cast(tf.round(tf.argmax(predictions, 1)), tf.int32), tf.cast(tf.argmax(self.targets, 1), tf.int32))
        self.accuracy = tf.reduce_mean(tf.cast(currect_pred, tf.float32))

        self.predictions = tf.argmax(tf.nn.softmax(rnn_out), 1)


tf.reset_default_graph()
model = PixelRNN()
num_examples=271
batch_size=10
buffer_size=271
num_cpu_cores=4
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.shuffle(buffer_size, reshuffle_each_iteration=True).repeat()
#dataset = dataset.apply(tf.data.batch( batch_size=batch_size, num_parallel_batches=num_cpu_cores))

dataset = dataset.batch(10) # apply batch to dataset 

iterator = dataset.make_one_shot_iterator() # create iterator
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for ii in tqdm(range(num_examples // batch_size)):
    batch = iterator.get_next() #run iterator
    images = batch[0]
    targets = batch[1]

    c, _, a = sess.run([model.cost, model.opt, model.accuracy],feed_dict={model.inputs: images, model.targets:targets})

    epoch_loss.append(c)
    training_accuracy.append(a)

    print("Epoch: {}/{}".format(i, epochs), " | Current loss: {}".format(np.mean(epoch_loss)),
          " | Training accuracy: {:.4f}%".format(np.mean(training_accuracy)))

按照建议进行操作时,出现以下错误-

  

TypeError:提要的值不能是tf.Tensor对象。   可接受的Feed值包括Python标量,字符串,列表,numpy   ndarrays或TensorHandles,作为参考,张量对象为   Tensor(“ IteratorGetNext:0”,shape =(?, 129,251),dtype = float32)其中   已通过键Tensor(“ inputs:0”,shape =(?, 129,   251),dtype = float32)。

无法弄清这里出了什么问题

1 个答案:

答案 0 :(得分:0)

如果您的数据集为numpy数组或图像文件列表,请使用from_tensor_slices。 定义解析函数,如果使用文件名列表,则使用read_filedecode_image,否则只需应用任何预处理

def parse_image(filename, label):
    file = tf.read_file(filename)
    image = tf.image.decode_image(file)
    #do any image/label preprocessing here
    return image, label

然后定义数据集对象。通常,将数据集的长度用作混洗缓冲区,但这可能取决于大小。重复功能将控制时期(无值传递=不定迭代)。如果不需要任何预处理,请用dataset.apply

替换行dataset = dataset.batch(batch_size)
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset_train.shuffle(buffer_size, reshuffle_each_iteration=True).repeat()
dataset = dataset.apply(tf.data.batch( batch_size=batch_size, num_parallel_batches=num_cpu_cores))

创建迭代器。通常,如果仅输入数组不会引起2GB graphdef限制,则无需使用feed dict。

iterator = dataset.make_one_shot_iterator()
batch = iterator.get_next()

编辑:您需要从数据集创建迭代器,这是整体结构:

dataset = dataset.batch(10) # apply batch to dataset 
iterator = dataset.make_one_shot_iterator() # create iterator
batch = iterator.get_next() #run iterator
images = batch[0]
targets = batch[1]

logits = Model_function(images)
loss = loss_function(logits, targets)
train_op = optimizer.minimize()

sess = tf.Session()
sess.run(tf.global_variables_initializer())

for i in range(steps):
    sess.run(train_op)