我要通过函数(反向地址解析器)放置较大的df坐标, 如何在不重复的情况下遍历整个df(需要很长时间)
示例df:
Latitude Longitude
0 -25.66026 28.0914
1 -25.67923 28.10525
2 -30.68456 19.21694
3 -30.12345 22.34256
4 -15.12546 17.12365
运行完我想要的功能后(没有for循环...)df:
City
0 HappyPlace
1 SadPlace
2 AveragePlace
3 CoolPlace
4 BadPlace
注意:我不需要知道如何进行反向地理编码,这是一个将函数应用于整个df而无需迭代的问题。
编辑:
使用df.apply()可能无法正常工作,因为我的代码如下所示:
for i in range(len(df)):
results = g.reverse_geocode(df['LATITUDE'][i], df['LONGITUDE'][i])
city.append(results.city)
答案 0 :(得分:2)
较慢的方法遍历地理位置列表并获取地理位置的城市
import pandas as pd
import time
d = {'Latitude': [-25.66026,-25.67923,-30.68456,-30.12345,-15.12546,-25.66026,-25.67923,-30.68456,-30.12345,-15.12546], 'Longitude': [28.0914, 28.10525,19.21694,22.34256,17.12365,28.0914, 28.10525,19.21694,22.34256,17.12365]}
df = pd.DataFrame(data=d)
# example method of g.reverse_geocode() -> geo_reverse
def geo_reverse(lat, long):
time.sleep(2)
#assuming that your reverse_geocode will take 2 second
print(lat, long)
for i in range(len(df)):
results = geo_reverse(df['Latitude'][i], df['Longitude'][i])
由于time.sleep(2)
。上述程序将至少花费20秒来处理所有十个地理位置。
比上述方法更好的方法:
import pandas as pd
import time
d = {'Latitude': [-25.66026,-25.67923,-30.68456,-30.12345,-15.12546,-25.66026,-25.67923,-30.68456,-30.12345,-15.12546], 'Longitude': [28.0914, 28.10525,19.21694,22.34256,17.12365,28.0914, 28.10525,19.21694,22.34256,17.12365]}
df = pd.DataFrame(data=d)
import threading
def runnable_method(f, args):
result_info = [threading.Event(), None]
def runit():
result_info[1] = f(args)
result_info[0].set()
threading.Thread(target=runit).start()
return result_info
def gather_results(result_infos):
results = []
for i in range(len(result_infos)):
result_infos[i][0].wait()
results.append(result_infos[i][1])
return results
def geo_reverse(args):
time.sleep(2)
return "City Name of ("+str(args[0])+","+str(args[1])+")"
geo_points = []
for i in range(len(df)):
tuple_i = (df['Latitude'][i], df['Longitude'][i])
geo_points.append(tuple_i)
result_info = [runnable_method(geo_reverse, geo_point) for geo_point in geo_points]
cities_result = gather_results(result_info)
print(cities_result)
请注意,方法geo_reverse
的处理时间为2秒,可根据地理位置获取数据。在第二个示例中,该代码仅需 2秒即可处理任意数量的点。
注意:尝试两种方法都假定您的geo_reverse
将花费大约。 2秒以获取数据。第一种方法将花费20 + 1秒,处理时间将随着输入数量的增加而增加,但是第二种方法将具有几乎恒定的处理时间(即大约2 + 1)秒,无论您要处理多少个地理点。>
假设上述代码中的g.reverse_geocode()
方法为geo_reverse()
。 分别运行上面的两个代码(方法),并自己查看差异。
说明: 看一下上面的代码及其主要部分,即创建元组列表并理解该列表,将每个元组传递给动态创建的线程(主要部分):
#Converting df of geo points into list of tuples
geo_points = []
for i in range(len(df)):
tuple_i = (df['Latitude'][i], df['Longitude'][i])
geo_points.append(tuple_i)
#List comprehension with custom methods and create run-able threads
result_info = [runnable_method(geo_reverse, geo_point) for geo_point in geo_points]
#gather result from each thread.
cities_result = gather_results(result_info)
print(cities_result)