我正在尝试预测接下来4个周期内的来电数量。虽然我的预测向我显示了接下来四个时期的数字,但是我对哪里出错了有些困惑。
Data:
Time Total Calls
8/1/2015 69676
9/1/2015 71827
10/1/2015 62504
11/1/2015 59431
12/1/2015 63304
1/1/2016 58899
2/1/2016 55922
3/1/2016 60463
4/1/2016 56121
5/1/2016 58574
6/1/2016 64467
7/1/2016 61825
8/1/2016 75784
9/1/2016 67047
10/1/2016 63000
11/1/2016 63318
12/1/2016 66612
1/1/2017 71614
2/1/2017 62875
3/1/2017 66297
4/1/2017 66193
5/1/2017 70143
6/1/2017 72259
7/1/2017 65793
8/1/2017 53687
9/1/2017 48518
10/1/2017 58740
11/1/2017 50801
12/1/2017 44293
1/1/2018 61150
2/1/2018 49619
3/1/2018 49621
4/1/2018 48645
5/1/2018 37958
6/1/2018 37725
7/1/2018 42221
8/1/2018 41663
9/1/2018 35328
10/1/2018 37687
尝试使用R预测未来4个月的数据
tier2=ts(tier2,start=c(2015,8),end=c(2019,2),frequency=12)
tier2_train<-window(tier2[,2],end=c(2018,10))
tier2_test<-window(tier2[,2],start=c(2018,11))
plot(tier2_train,xlab="Time Period",ylab="Total Calls")
automatic<auto.arima(tier2_train,seasonal=T,stepwise=FALSE,approximation=FALSE,ic="aicc")
# automatic ** The model decided (0,1,1)
forecast1 <- forecast::forecast(automatic, h = 4)
forecast1
Forecast output::
Point Forecast
Nov 2018 37716
Dec 2018 37716
Jan 2019 37716
Feb 2019 37716
接下来的4个月37716似乎不合适。如何计算未来4个月的预测
R code mentioned above
Expected results: to be close to:
11/1/2018 31657
12/1/2018 26390
1/1/2019 27542
2/1/2019 23262
答案 0 :(得分:0)
您的问题类似于https://stats.stackexchange.com/questions/286900/arima-forecast-straight-line
基本上,auto.arima确实在搜索季节性模型,但它也在搜索非季节性模型,请使用参数跟踪,以便您可以查看正在测试的模型。
要“解决”此问题,请参考链接并强制D> 1。
示例。
plot(forecast(auto.arima(tier2_train,trace = TRUE,seasonal = TRUE,D=1)))
这也是数据
structure(c(32L, 36L, 4L, 8L, 11L, 1L, 14L, 17L, 20L, 23L, 26L,
29L, 33L, 37L, 5L, 9L, 12L, 2L, 15L, 18L, 21L, 24L, 27L, 30L,
34L, 38L, 6L, 10L, 13L, 3L, 16L, 19L, 22L, 25L, 28L, 31L, 35L,
39L, 7L, 32L, 36L, 4L, 8L, 69676L, 71827L, 62504L, 59431L, 63304L,
58899L, 55922L, 60463L, 56121L, 58574L, 64467L, 61825L, 75784L,
67047L, 63000L, 63318L, 66612L, 71614L, 62875L, 66297L, 66193L,
70143L, 72259L, 65793L, 53687L, 48518L, 58740L, 50801L, 44293L,
61150L, 49619L, 49621L, 48645L, 37958L, 37725L, 42221L, 41663L,
35328L, 37687L, 69676L, 71827L, 62504L, 59431L), .Dim = c(43L,
2L), .Dimnames = list(NULL, c("Time", "Total_Calls")), .Tsp = c(2015.58333333333,
2019.08333333333, 12), class = c("mts", "ts", "matrix"))