我想在tf.variable_scope中修改有关变量'weight1'的值。
我尝试通过其他功能修改值,但是跟着我行不通。
def inference(q, reuse=False):
with tf.variable_scope('layer1', reuse = reuse):
x = tf.get_variable('weight1', [1, 3], initializer = tf.truncated_normal_initializer(stddev = 0.1))
y = tf.get_variable('weight2', [3, 1], initializer = tf.constant_initializer([[1],[2],[3]]))
return tf.matmul(x, y)
def update_process(reuse=True):
with tf.variable_scope('layer1', reuse = reuse):
x = tf.get_variable('weight1',[1, 3])
update=tf.assign(x, x-1)
with tf.Session() as sess:
sess.run(init)
print(sess.run(x))
init = tf.global_variables_initializer()
z = inference(1)
with tf.Session() as sess:
sess.run(init)
for i in range(5):
update_process(reuse = True)
print(sess.run(z))
print('\n')
我希望此代码输出有关sess.run(z)的不同列表,但值始终相同。
答案 0 :(得分:0)
您需要在图形的sess.run(update)
部分运行的同一会话中,在update_process
中运行inference
:
import tensorflow as tf
def inference(q, reuse=False):
with tf.variable_scope('layer1', reuse = reuse):
x = tf.get_variable('weight1', [1, 3], initializer = tf.truncated_normal_initializer(stddev = 0.1))
y = tf.get_variable('weight2', [3, 1], initializer = tf.constant_initializer([[1],[2],[3]]))
return tf.matmul(x, y)
def update_process(reuse=True):
with tf.variable_scope('layer1', reuse = reuse):
x = tf.get_variable('weight1',[1, 3])
update=tf.assign(x, x-1)
print(sess.run(update))
z = inference(1)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for i in range(5):
update_process(reuse = True)
print(sess.run(z))
print('\n')