我有一个用于对象识别的脚本。在将输出写入1个子文件夹的磁盘输出时,会附加到第二个子文件夹的输出
该代码可以很好地用于对象识别,可以完美地写入第一个子文件夹的数据,但是在写入第二个子文件夹的输出时,第一个子文件夹的输出也将添加到第二个子文件夹的输出中
def recognize_object(model_name,ckpt_path,label_path,test_img_path,img_output):
count=0
sys.path.append("..")
MODEL_NAME = model_name
PATH_TO_CKPT = ckpt_path
PATH_TO_LABELS = label_path
if not os.path.exists(img_output):
os.makedirs(img_output,exist_ok=True)
folders = glob(test_img_path)
print(folders)
img_list=[]
for folder in folders:
folder_name=os.path.basename(folder)
print(folder_name)
out=img_output+"\\"+folder_name
os.makedirs(out,exist_ok=True)
print(out)
for f in glob(folder+"/*.jpg"):
img_list.append(f)
for x in range(len(img_list)):
PATH_TO_IMAGE = img_list[x]
v1=os.path.basename(img_list[x])
img_name = os.path.splitext(v1)[0]
NUM_CLASSES = 3
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
image = cv2.imread(PATH_TO_IMAGE)
image_expanded = np.expand_dims(image, axis=0)
(boxes, scores, classes, num) = sess.run([detection_boxes, detection_scores, detection_classes, num_detections],feed_dict={image_tensor: image_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4,
min_score_thresh=0.80,
skip_scores=True)
coordinates=vis_util.return_coordinates(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4,
min_score_thresh=0.80)
threshold=0.80
cv2.imwrite(out+"\\{}.jpg".format(img_name),image)
cv2.waitKey(0)
cv2.destroyAllWindows()
objects = []
with open(out+'/metadata.csv','a') as csv_file:
writer = csv.writer(csv_file)
for index, value in enumerate(classes[0]):
object_dict = {}
if scores[0, index] > threshold:
object_dict[(category_index.get(value)).get('name').encode('utf8')] = scores[0, index]
objects.append(object_dict)
writer.writerow(objects)
print (objects)
filename_string='coordinates_data'
textfile = open("json/"+filename_string+".json", "a")
textfile.write(json.dumps(coordinates))
textfile.write("\n")
textfile = open("json/"+"img_names"+".json", "a")
textfile.write(json.dumps(PATH_TO_IMAGE))
textfile.write("\n")
img_list=[]
model_name='inference_graph'
ckpt_path=("C:\\new_multi_cat\\models\\research\\object_detection\\inference_graph\\frozen_inference_graph.pb")
label_path=("C:\\new_multi_cat\\models\\research\\object_detection\\training\\labelmap.pbtxt")
test_img_path=("C:\\Python35\\target_non_target\\Target_images_new\\*")
img_output=("C:\\new_multi_cat\\models\\research\\object_detection\\my_imgs")
recognize = recognize_object(model_name,ckpt_path,label_path,test_img_path,img_output)
假设存在一个带有子文件夹C和D的文件夹Y。我希望将数据写入其各自的文件夹中。当前,子文件夹C的数据被完美地写入,但是在为子文件夹D写入数据时,文件夹C的数据也被附加到D。此问题与缩进还是其他有关?
答案 0 :(得分:1)
再缩第二次SELECT rol.rolname,
dat.datname,
split_part(kvp.kvp, '=', 2) timezone
FROM pg_authid rol
CROSS JOIN (SELECT dat.oid,
dat.datname
FROM pg_database dat
UNION ALL
SELECT 0::oid oid,
'' datname) dat
LEFT JOIN pg_db_role_setting set
ON set.setdatabase = dat.oid
AND set.setrole = rol.oid
LEFT JOIN LATERAL unnest(set.setconfig) kvp (kvp)
ON lower(split_part(kvp.kvp, '=', 1)) = 'timezone'
ORDER BY 1,
2;
,它在文件夹循环之外。