使用众神示例的图形并添加以下“金额”属性:
rand = new Random()
g.withSack {rand.nextFloat()}.E().property('amount',sack())
下面的遍历基于https://neo4j.com/docs/graph-algorithms/current/algorithms/similarity-pearson/,目的是计算(Ai-均值(A))和(Bi-均值(B))项:
g.V().match(
__.as('v1').outE().valueMap().select('amount').fold().as('e1'),
__.as('v1').V().as('v2'),
__.as('v2').outE().valueMap().select('amount').fold().as('e2'),
__.as('v1').outE().inV().dedup().fold().as('v1n'),
__.as('v2').outE().inV().dedup().fold().as('v2n')
).
where('v1',neq('v2').and(without('v1n'))).
where('v2',without('v1n')).
project('v1','v2','a1','a2','a1m','a2m').
by(select('v1')).
by(select('v2')).
by(select('e1')).
by(select('e2')).
by(select('e1').unfold().mean()).
by(select('e2').unfold().mean()).
where(select('a1').unfold().count().is(gt(0))).
where(select('a2').unfold().count().is(gt(0)))
遍历的输出:
==>[a1:[v1:v[4096],v2:v[4248],a1:[0.30577987,0.8416171,0.5247855,0.57484317,0.35161084],a2:[0.7349615,0.80212617,0.6879539],a1m:0.5197273015975952,a2m:0.7416805227597555]]
==>[a1:[v1:v[4096],v2:v[4264],a1:[0.30577987,0.8416171,0.5247855,0.57484317,0.35161084],a2:[0.37226892,0.8902944,0.4158439,0.9709829],a1m:0.5197273015975952,a2m:0.6623475253582001]]
==>[a1:[v1:v[8192],v2:v[4096],a1:[0.32524675],a2:[0.30577987,0.8416171,0.5247855,0.57484317,0.35161084],a1m:0.32524675130844116,a2m:0.5197273015975952]]
==>[a1:[v1:v[8192],v2:v[4184],a1:[0.32524675],a2:[0.53761715,0.9604127,0.87463444,0.7719325],a1m:0.32524675130844116,a2m:0.786149188876152]]
==>[a1:[v1:v[8192],v2:v[4248],a1:[0.32524675],a2:[0.7349615,0.80212617,0.6879539],a1m:0.32524675130844116,a2m:0.7416805227597555]]
==>[a1:[v1:v[8192],v2:v[4264],a1:[0.32524675],a2:[0.37226892,0.8902944,0.4158439,0.9709829],a1m:0.32524675130844116,a2m:0.6623475253582001]]
==>[a1:[v1:v[4184],v2:v[4096],a1:[0.53761715,0.9604127,0.87463444,0.7719325],a2:[0.30577987,0.8416171,0.5247855,0.57484317,0.35161084],a1m:0.786149188876152,a2m:0.5197273015975952]]
==>[a1:[v1:v[4184],v2:v[8192],a1:[0.53761715,0.9604127,0.87463444,0.7719325],a2:[0.32524675],a1m:0.786149188876152,a2m:0.32524675130844116]]
==>[a1:[v1:v[4248],v2:v[4096],a1:[0.7349615,0.80212617,0.6879539],a2:[0.30577987,0.8416171,0.5247855,0.57484317,0.35161084],a1m:0.7416805227597555,a2m:0.5197273015975952]]
==>[a1:[v1:v[4248],v2:v[8192],a1:[0.7349615,0.80212617,0.6879539],a2:[0.32524675],a1m:0.7416805227597555,a2m:0.32524675130844116]]
==>[a1:[v1:v[4264],v2:v[4096],a1:[0.37226892,0.8902944,0.4158439,0.9709829],a2:[0.30577987,0.8416171,0.5247855,0.57484317,0.35161084],a1m:0.6623475253582001,a2m:0.5197273015975952]]
从遍历的这一点开始,有人将如何计算“ a1-a1m”和“ a2-a2m”?这里的问题是从列表中的每个元素中减去一个值,然后返回差异列表,有关示例的任何帮助都将非常有用。
答案 0 :(得分:0)
既然您已经在地图中拥有所有值,那么我们就从这里开始。
gremlin> __.inject(['a1': [0.30577987,0.8416171,0.5247855,0.57484317,0.35161084],
......1> 'a2': [0.7349615,0.80212617,0.6879539],
......2> 'a1m': 0.5197273015975952,
......3> 'a2m': 0.7416805227597555])
==>[a1:[0.30577987,0.8416171,0.5247855,0.57484317,0.35161084],a2:[0.7349615,0.80212617,0.6879539],a1m:0.5197273015975952,a2m:0.7416805227597555]
从每个单个值(ai)中减去平均值(am)就像展开a
,进行数学运算(ai-am
或(am-ai)*(-1)
并将它们折回在一起一样简单:
gremlin> __.inject(['a1': [0.30577987,0.8416171,0.5247855,0.57484317,0.35161084],
......1> 'a2': [0.7349615,0.80212617,0.6879539],
......2> 'a1m': 0.5197273015975952,
......3> 'a2m': 0.7416805227597555]).
......4> sack(assign).
......5> by(select('a1m')).
......6> select('a1').unfold().
......7> sack(minus).
......8> sack(mult).
......9> by(constant(-1)).
.....10> sack().fold()
==>[-0.2139474315975952,0.3218897984024048,0.0050581984024048,0.0551158684024048,-0.1681164615975952]
因此,对于这两个值,它只是另一个投影:
gremlin> __.inject(['a1': [0.30577987,0.8416171,0.5247855,0.57484317,0.35161084],
......1> 'a2': [0.7349615,0.80212617,0.6879539],
......2> 'a1m': 0.5197273015975952,
......3> 'a2m': 0.7416805227597555]).
......4> project('a','b').
......5> by(sack(assign).
......6> by(select('a1m')).
......7> select('a1').unfold().
......8> sack(minus).
......9> sack(mult).
.....10> by(constant(-1)).
.....11> sack().fold()).
.....12> by(sack(assign).
.....13> by(select('a2m')).
.....14> select('a2').unfold().
.....15> sack(minus).
.....16> sack(mult).
.....17> by(constant(-1)).
.....18> sack().fold())
==>[a:[-0.2139474315975952,0.3218897984024048,0.0050581984024048,0.0551158684024048,-0.1681164615975952],b:[-0.0067190227597555,0.0604456472402445,-0.0537266227597555]]
我想最终的值还会有更多步骤,我相信最终查询可以简化很多,但是最好在另一个线程中处理。