考虑对集合进行以下简单操作:
static List<int> x = new List<int>() { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
var result = x.Where(i => i % 2 == 0).Where(i => i > 5);
现在让我们使用表达式。以下代码大致相当:
static void UsingLambda() {
Func<IEnumerable<int>, IEnumerable<int>> lambda = l => l.Where(i => i % 2 == 0).Where(i => i > 5);
var t0 = DateTime.Now.Ticks;
for (int j = 1; j < MAX; j++)
var sss = lambda(x).ToList();
var tn = DateTime.Now.Ticks;
Console.WriteLine("Using lambda: {0}", tn - t0);
}
但是我想在运行中构建表达式,所以这是一个新的测试:
static void UsingCompiledExpression() {
var f1 = (Expression<Func<IEnumerable<int>, IEnumerable<int>>>)(l => l.Where(i => i % 2 == 0));
var f2 = (Expression<Func<IEnumerable<int>, IEnumerable<int>>>)(l => l.Where(i => i > 5));
var argX = Expression.Parameter(typeof(IEnumerable<int>), "x");
var f3 = Expression.Invoke(f2, Expression.Invoke(f1, argX));
var f = Expression.Lambda<Func<IEnumerable<int>, IEnumerable<int>>>(f3, argX);
var c3 = f.Compile();
var t0 = DateTime.Now.Ticks;
for (int j = 1; j < MAX; j++)
var sss = c3(x).ToList();
var tn = DateTime.Now.Ticks;
Console.WriteLine("Using lambda compiled: {0}", tn - t0);
}
当然它与上述不完全相同,所以公平地说,我稍微修改了第一个:
static void UsingLambdaCombined() {
Func<IEnumerable<int>, IEnumerable<int>> f1 = l => l.Where(i => i % 2 == 0);
Func<IEnumerable<int>, IEnumerable<int>> f2 = l => l.Where(i => i > 5);
Func<IEnumerable<int>, IEnumerable<int>> lambdaCombined = l => f2(f1(l));
var t0 = DateTime.Now.Ticks;
for (int j = 1; j < MAX; j++)
var sss = lambdaCombined(x).ToList();
var tn = DateTime.Now.Ticks;
Console.WriteLine("Using lambda combined: {0}", tn - t0);
}
现在结果为MAX = 100000,VS2008,调试开启:
Using lambda compiled: 23437500
Using lambda: 1250000
Using lambda combined: 1406250
调试关闭:
Using lambda compiled: 21718750
Using lambda: 937500
Using lambda combined: 1093750
惊喜。编译后的表达式比其他替代方案慢大约17倍。现在问题出现了:
l.Where(i => i % 2 == 0).Where(i => i > 5);
?更多统计数据。 Visual Studio 2010,调试ON,优化OFF:
Using lambda: 1093974
Using lambda compiled: 15315636
Using lambda combined: 781410
调试ON,优化ON:
Using lambda: 781305
Using lambda compiled: 15469839
Using lambda combined: 468783
调试OFF,优化ON:
Using lambda: 625020
Using lambda compiled: 14687970
Using lambda combined: 468765
新的惊喜。从VS2008(C#3)切换到VS2010(C#4),使UsingLambdaCombined
比原生lambda更快。
好的,我找到了一种方法来将lambda编译的性能提高一个数量级以上。这是一个提示;运行探查器后,92%的时间用于:
System.Reflection.Emit.DynamicMethod.CreateDelegate(class System.Type, object)
嗯...为什么在每次迭代中都会创建一个新的委托?我不确定,但解决方案是在一个单独的帖子中。
答案 0 :(得分:43)
可能是内部lambda没有被编译?!?这是一个概念证明:
static void UsingCompiledExpressionWithMethodCall() {
var where = typeof(Enumerable).GetMember("Where").First() as System.Reflection.MethodInfo;
where = where.MakeGenericMethod(typeof(int));
var l = Expression.Parameter(typeof(IEnumerable<int>), "l");
var arg0 = Expression.Parameter(typeof(int), "i");
var lambda0 = Expression.Lambda<Func<int, bool>>(
Expression.Equal(Expression.Modulo(arg0, Expression.Constant(2)),
Expression.Constant(0)), arg0).Compile();
var c1 = Expression.Call(where, l, Expression.Constant(lambda0));
var arg1 = Expression.Parameter(typeof(int), "i");
var lambda1 = Expression.Lambda<Func<int, bool>>(Expression.GreaterThan(arg1, Expression.Constant(5)), arg1).Compile();
var c2 = Expression.Call(where, c1, Expression.Constant(lambda1));
var f = Expression.Lambda<Func<IEnumerable<int>, IEnumerable<int>>>(c2, l);
var c3 = f.Compile();
var t0 = DateTime.Now.Ticks;
for (int j = 1; j < MAX; j++)
{
var sss = c3(x).ToList();
}
var tn = DateTime.Now.Ticks;
Console.WriteLine("Using lambda compiled with MethodCall: {0}", tn - t0);
}
现在的时间是:
Using lambda: 625020
Using lambda compiled: 14687970
Using lambda combined: 468765
Using lambda compiled with MethodCall: 468765
活泉!它不仅速度快,而且比原生lambda快。 ( Scratch head )。
当然上面的代码太难以写了。让我们做一些简单的魔术:
static void UsingCompiledConstantExpressions() {
var f1 = (Func<IEnumerable<int>, IEnumerable<int>>)(l => l.Where(i => i % 2 == 0));
var f2 = (Func<IEnumerable<int>, IEnumerable<int>>)(l => l.Where(i => i > 5));
var argX = Expression.Parameter(typeof(IEnumerable<int>), "x");
var f3 = Expression.Invoke(Expression.Constant(f2), Expression.Invoke(Expression.Constant(f1), argX));
var f = Expression.Lambda<Func<IEnumerable<int>, IEnumerable<int>>>(f3, argX);
var c3 = f.Compile();
var t0 = DateTime.Now.Ticks;
for (int j = 1; j < MAX; j++) {
var sss = c3(x).ToList();
}
var tn = DateTime.Now.Ticks;
Console.WriteLine("Using lambda compiled constant: {0}", tn - t0);
}
和一些时间,VS2010,优化开启,调试关闭:
Using lambda: 781260
Using lambda compiled: 14687970
Using lambda combined: 468756
Using lambda compiled with MethodCall: 468756
Using lambda compiled constant: 468756
现在你可以争辩说我没有动态生成整个表达式;只是链接调用。但在上面的例子中,我生成了整个表达式。时间匹配。这只是编写更少代码的捷径。
根据我的理解,正在发生的是.Compile()方法不会将编译传播到内部lambdas,因此不会将CreateDelegate
的常量调用传播。但要真正理解这一点,我希望有一个.NET大师对内部事情进行一些评论。
为什么,哦为什么现在比现在的lambda更快了??
答案 1 :(得分:10)
最近我问了一个几乎相同的问题:
Performance of compiled-to-delegate Expression
我的解决方案是,我不应该在Compile
上致电Expression
,但我应该在其上调用CompileToMethod
并将Expression
编译为{动态程序集中的{1}}方法。
像这样:
static
然而,这并不理想。我不太确定这适用于哪种类型,但我认为由委托作为参数或由委托返回的类型为var assemblyBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(
new AssemblyName("MyAssembly_" + Guid.NewGuid().ToString("N")),
AssemblyBuilderAccess.Run);
var moduleBuilder = assemblyBuilder.DefineDynamicModule("Module");
var typeBuilder = moduleBuilder.DefineType("MyType_" + Guid.NewGuid().ToString("N"),
TypeAttributes.Public));
var methodBuilder = typeBuilder.DefineMethod("MyMethod",
MethodAttributes.Public | MethodAttributes.Static);
expression.CompileToMethod(methodBuilder);
var resultingType = typeBuilder.CreateType();
var function = Delegate.CreateDelegate(expression.Type,
resultingType.GetMethod("MyMethod"));
而非通用的。它必须是非泛型的,因为泛型类型显然访问public
,这是.NET在泛型类型下使用的内部类型,这违反了“必须是System.__Canon
类型规则”。
对于这些类型,您可以使用明显较慢的public
。我用以下方式检测它们:
Compile
但就像我说的那样,这并不理想,我仍然想知道为什么将动态装配的方法编译为有时要快一个数量级。我有时会说,因为我也看到了用private static bool IsPublicType(Type t)
{
if ((!t.IsPublic && !t.IsNestedPublic) || t.IsGenericType)
{
return false;
}
int lastIndex = t.FullName.LastIndexOf('+');
if (lastIndex > 0)
{
var containgTypeName = t.FullName.Substring(0, lastIndex);
var containingType = Type.GetType(containgTypeName + "," + t.Assembly);
if (containingType != null)
{
return containingType.IsPublic;
}
return false;
}
else
{
return t.IsPublic;
}
}
编译的Expression
与普通方法一样快的情况。看到我的问题。
或者,如果有人知道绕过动态装配的“无非Compile
类型”约束的方法,那也是受欢迎的。
答案 2 :(得分:4)
您的表达方式不相同,因此您会得到偏差的结果。我写了一个测试台来测试这个。测试包括常规的lambda调用,等效的编译表达式,手工制作的等效编译表达式,以及组合版本。这些应该是更准确的数字。有趣的是,我没有看到普通版本和合成版本之间存在太大差异。编译后的表达式自然会慢一点,但只是很少。您需要足够大的输入和迭代计数才能获得一些好的数字。它有所作为。
至于你的第二个问题,我不知道你怎么能从中获得更多的表现,所以我无法帮助你。它看起来和它一样好。
您可以在HandMadeLambdaExpression()
方法中找到我对第三个问题的答案。由于扩展方法,不是最容易构建的表达式,但可行。
using System;
using System.Collections.Generic;
using System.Linq;
using System.Diagnostics;
using System.Linq.Expressions;
namespace ExpressionBench
{
class Program
{
static void Main(string[] args)
{
var values = Enumerable.Range(0, 5000);
var lambda = GetLambda();
var lambdaExpression = GetLambdaExpression().Compile();
var handMadeLambdaExpression = GetHandMadeLambdaExpression().Compile();
var composed = GetComposed();
var composedExpression = GetComposedExpression().Compile();
var handMadeComposedExpression = GetHandMadeComposedExpression().Compile();
DoTest("Lambda", values, lambda);
DoTest("Lambda Expression", values, lambdaExpression);
DoTest("Hand Made Lambda Expression", values, handMadeLambdaExpression);
Console.WriteLine();
DoTest("Composed", values, composed);
DoTest("Composed Expression", values, composedExpression);
DoTest("Hand Made Composed Expression", values, handMadeComposedExpression);
}
static void DoTest<TInput, TOutput>(string name, TInput sequence, Func<TInput, TOutput> operation, int count = 1000000)
{
for (int _ = 0; _ < 1000; _++)
operation(sequence);
var sw = Stopwatch.StartNew();
for (int _ = 0; _ < count; _++)
operation(sequence);
sw.Stop();
Console.WriteLine("{0}:", name);
Console.WriteLine(" Elapsed: {0,10} {1,10} (ms)", sw.ElapsedTicks, sw.ElapsedMilliseconds);
Console.WriteLine(" Average: {0,10} {1,10} (ms)", decimal.Divide(sw.ElapsedTicks, count), decimal.Divide(sw.ElapsedMilliseconds, count));
}
static Func<IEnumerable<int>, IList<int>> GetLambda()
{
return v => v.Where(i => i % 2 == 0).Where(i => i > 5).ToList();
}
static Expression<Func<IEnumerable<int>, IList<int>>> GetLambdaExpression()
{
return v => v.Where(i => i % 2 == 0).Where(i => i > 5).ToList();
}
static Expression<Func<IEnumerable<int>, IList<int>>> GetHandMadeLambdaExpression()
{
var enumerableMethods = typeof(Enumerable).GetMethods();
var whereMethod = enumerableMethods
.Where(m => m.Name == "Where")
.Select(m => m.MakeGenericMethod(typeof(int)))
.Where(m => m.GetParameters()[1].ParameterType == typeof(Func<int, bool>))
.Single();
var toListMethod = enumerableMethods
.Where(m => m.Name == "ToList")
.Select(m => m.MakeGenericMethod(typeof(int)))
.Single();
// helpers to create the static method call expressions
Func<Expression, ParameterExpression, Func<ParameterExpression, Expression>, Expression> WhereExpression =
(instance, param, body) => Expression.Call(whereMethod, instance, Expression.Lambda(body(param), param));
Func<Expression, Expression> ToListExpression =
instance => Expression.Call(toListMethod, instance);
//return v => v.Where(i => i % 2 == 0).Where(i => i > 5).ToList();
var exprParam = Expression.Parameter(typeof(IEnumerable<int>), "v");
var expr0 = WhereExpression(exprParam,
Expression.Parameter(typeof(int), "i"),
i => Expression.Equal(Expression.Modulo(i, Expression.Constant(2)), Expression.Constant(0)));
var expr1 = WhereExpression(expr0,
Expression.Parameter(typeof(int), "i"),
i => Expression.GreaterThan(i, Expression.Constant(5)));
var exprBody = ToListExpression(expr1);
return Expression.Lambda<Func<IEnumerable<int>, IList<int>>>(exprBody, exprParam);
}
static Func<IEnumerable<int>, IList<int>> GetComposed()
{
Func<IEnumerable<int>, IEnumerable<int>> composed0 =
v => v.Where(i => i % 2 == 0);
Func<IEnumerable<int>, IEnumerable<int>> composed1 =
v => v.Where(i => i > 5);
Func<IEnumerable<int>, IList<int>> composed2 =
v => v.ToList();
return v => composed2(composed1(composed0(v)));
}
static Expression<Func<IEnumerable<int>, IList<int>>> GetComposedExpression()
{
Expression<Func<IEnumerable<int>, IEnumerable<int>>> composed0 =
v => v.Where(i => i % 2 == 0);
Expression<Func<IEnumerable<int>, IEnumerable<int>>> composed1 =
v => v.Where(i => i > 5);
Expression<Func<IEnumerable<int>, IList<int>>> composed2 =
v => v.ToList();
var exprParam = Expression.Parameter(typeof(IEnumerable<int>), "v");
var exprBody = Expression.Invoke(composed2, Expression.Invoke(composed1, Expression.Invoke(composed0, exprParam)));
return Expression.Lambda<Func<IEnumerable<int>, IList<int>>>(exprBody, exprParam);
}
static Expression<Func<IEnumerable<int>, IList<int>>> GetHandMadeComposedExpression()
{
var enumerableMethods = typeof(Enumerable).GetMethods();
var whereMethod = enumerableMethods
.Where(m => m.Name == "Where")
.Select(m => m.MakeGenericMethod(typeof(int)))
.Where(m => m.GetParameters()[1].ParameterType == typeof(Func<int, bool>))
.Single();
var toListMethod = enumerableMethods
.Where(m => m.Name == "ToList")
.Select(m => m.MakeGenericMethod(typeof(int)))
.Single();
Func<ParameterExpression, Func<ParameterExpression, Expression>, Expression> LambdaExpression =
(param, body) => Expression.Lambda(body(param), param);
Func<Expression, ParameterExpression, Func<ParameterExpression, Expression>, Expression> WhereExpression =
(instance, param, body) => Expression.Call(whereMethod, instance, Expression.Lambda(body(param), param));
Func<Expression, Expression> ToListExpression =
instance => Expression.Call(toListMethod, instance);
var composed0 = LambdaExpression(Expression.Parameter(typeof(IEnumerable<int>), "v"),
v => WhereExpression(
v,
Expression.Parameter(typeof(int), "i"),
i => Expression.Equal(Expression.Modulo(i, Expression.Constant(2)), Expression.Constant(0))));
var composed1 = LambdaExpression(Expression.Parameter(typeof(IEnumerable<int>), "v"),
v => WhereExpression(
v,
Expression.Parameter(typeof(int), "i"),
i => Expression.GreaterThan(i, Expression.Constant(5))));
var composed2 = LambdaExpression(Expression.Parameter(typeof(IEnumerable<int>), "v"),
v => ToListExpression(v));
var exprParam = Expression.Parameter(typeof(IEnumerable<int>), "v");
var exprBody = Expression.Invoke(composed2, Expression.Invoke(composed1, Expression.Invoke(composed0, exprParam)));
return Expression.Lambda<Func<IEnumerable<int>, IList<int>>>(exprBody, exprParam);
}
}
}
我机器上的结果:
Lambda: Elapsed: 340971948 123230 (ms) Average: 340.971948 0.12323 (ms) Lambda Expression: Elapsed: 357077202 129051 (ms) Average: 357.077202 0.129051 (ms) Hand Made Lambda Expression: Elapsed: 345029281 124696 (ms) Average: 345.029281 0.124696 (ms) Composed: Elapsed: 340409238 123027 (ms) Average: 340.409238 0.123027 (ms) Composed Expression: Elapsed: 350800599 126782 (ms) Average: 350.800599 0.126782 (ms) Hand Made Composed Expression: Elapsed: 352811359 127509 (ms) Average: 352.811359 0.127509 (ms)
答案 3 :(得分:3)
编译的lambda性能超过委托可能会慢一些,因为运行时的编译代码可能没有优化,但是手动编写的代码和通过C#编译器编译的代码已经过优化。
其次,多个lambda表达式意味着多个匿名方法,并且调用每个方法只需要花费额外的时间来评估直接方法。例如,调用
Console.WriteLine(x);
和
Action x => Console.WriteLine(x);
x(); // this means two different calls..
是不同的,从编译器的角度来看,第二个需要更多的开销,实际上是两个不同的调用。首先调用x本身然后调用x的语句。
所以你的组合Lambda肯定会比单个lambda表达式的性能慢一点。
这与内部执行的内容无关,因为您仍在评估正确的逻辑,但是您正在为编译器添加额外的步骤。
即使在表达式树被编译之后,它也不会有优化,它仍然会保留其复杂的小结构,评估和调用它可能会有额外的验证,空检查等,这可能会降低编译的lambda表达式的性能。 / p>