我正在使用转移学习为斯坦福汽车数据集构建ResNet-18分类模型。我想实施label smoothing来惩罚过度自信的预测并提高概括性。
TensorFlow在CrossEntropyLoss中有一个简单的关键字参数。有没有人为PyTorch构建了我可以即插即用的类似功能?
答案 0 :(得分:9)
多类神经网络的泛化和学习速度通常可以通过使用作为硬目标的加权平均的软目标来显着提高 和标签上的均匀分布。以这种方式平滑标签可以防止网络变得过于自信,并且标签平滑已用于许多最先进的模型,包括图像分类、语言翻译和语音识别。
标签平滑已在 Tensorflow
的交叉熵损失函数中实现。 BinaryCrossentropy,CategoricalCrossentropy。但目前,PyTorch
中没有正式实施标签平滑。但是,正在对此进行积极讨论,并希望将提供官方软件包。这是讨论主题:Issue #7455。
在这里,我们将带来一些来自 PyTorch
从业者的 标签平滑 (LS) 的可用最佳实现。基本上,有很多方法可以实现LS。请参考这个具体的讨论,一个是here,和another here。在这里,我们将以 2 独特的方式实现实现,每种方式有两个版本;总共4。
通过这种方式,它接受了 one-hot
目标向量。用户必须手动平滑他们的目标向量。它可以在 with torch.no_grad()
范围内完成,因为它会暂时将所有 requires_grad
标志设置为 false。
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn.modules.loss import _WeightedLoss
class LabelSmoothingLoss(nn.Module):
def __init__(self, classes, smoothing=0.0, dim=-1, weight = None):
"""if smoothing == 0, it's one-hot method
if 0 < smoothing < 1, it's smooth method
"""
super(LabelSmoothingLoss, self).__init__()
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
self.weight = weight
self.cls = classes
self.dim = dim
def forward(self, pred, target):
assert 0 <= self.smoothing < 1
pred = pred.log_softmax(dim=self.dim)
if self.weight is not None:
pred = pred * self.weight.unsqueeze(0)
with torch.no_grad():
true_dist = torch.zeros_like(pred)
true_dist.fill_(self.smoothing / (self.cls - 1))
true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence)
return torch.mean(torch.sum(-true_dist * pred, dim=self.dim))
此外,我们在 self. smoothing
上添加了一个断言复选标记,并为此实现添加了损失加权支持。
Shital 已经在这里发布了答案。在此我们要指出,此实现类似于 Devin Yang 的上述实现。然而,我们在这里提到了他的代码,其中最小化了一点 code syntax
。
class SmoothCrossEntropyLoss(_WeightedLoss):
def __init__(self, weight=None, reduction='mean', smoothing=0.0):
super().__init__(weight=weight, reduction=reduction)
self.smoothing = smoothing
self.weight = weight
self.reduction = reduction
def k_one_hot(self, targets:torch.Tensor, n_classes:int, smoothing=0.0):
with torch.no_grad():
targets = torch.empty(size=(targets.size(0), n_classes),
device=targets.device) \
.fill_(smoothing /(n_classes-1)) \
.scatter_(1, targets.data.unsqueeze(1), 1.-smoothing)
return targets
def reduce_loss(self, loss):
return loss.mean() if self.reduction == 'mean' else loss.sum() \
if self.reduction == 'sum' else loss
def forward(self, inputs, targets):
assert 0 <= self.smoothing < 1
targets = self.k_one_hot(targets, inputs.size(-1), self.smoothing)
log_preds = F.log_softmax(inputs, -1)
if self.weight is not None:
log_preds = log_preds * self.weight.unsqueeze(0)
return self.reduce_loss(-(targets * log_preds).sum(dim=-1))
检查
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn.modules.loss import _WeightedLoss
if __name__=="__main__":
# 1. Devin Yang
crit = LabelSmoothingLoss(classes=5, smoothing=0.5)
predict = torch.FloatTensor([[0, 0.2, 0.7, 0.1, 0],
[0, 0.9, 0.2, 0.2, 1],
[1, 0.2, 0.7, 0.9, 1]])
v = crit(Variable(predict),
Variable(torch.LongTensor([2, 1, 0])))
print(v)
# 2. Shital Shah
crit = SmoothCrossEntropyLoss(smoothing=0.5)
predict = torch.FloatTensor([[0, 0.2, 0.7, 0.1, 0],
[0, 0.9, 0.2, 0.2, 1],
[1, 0.2, 0.7, 0.9, 1]])
v = crit(Variable(predict),
Variable(torch.LongTensor([2, 1, 0])))
print(v)
tensor(1.4178)
tensor(1.4178)
通过这种方式,它接受目标向量并使用不手动平滑目标向量,而是由内置模块处理标签平滑。它允许我们根据 F.nll_loss
实现标签平滑。
(一)。 Wangleiofficial:Source - (AFAIK),原始海报
(b)。 Datasaurus:Source - 添加加权支持
此外,我们略微减少了编码编写,使其更加简洁。
class LabelSmoothingLoss(torch.nn.Module):
def __init__(self, smoothing: float = 0.1,
reduction="mean", weight=None):
super(LabelSmoothingLoss, self).__init__()
self.smoothing = smoothing
self.reduction = reduction
self.weight = weight
def reduce_loss(self, loss):
return loss.mean() if self.reduction == 'mean' else loss.sum() \
if self.reduction == 'sum' else loss
def linear_combination(self, x, y):
return self.smoothing * x + (1 - self.smoothing) * y
def forward(self, preds, target):
assert 0 <= self.smoothing < 1
if self.weight is not None:
self.weight = self.weight.to(preds.device)
n = preds.size(-1)
log_preds = F.log_softmax(preds, dim=-1)
loss = self.reduce_loss(-log_preds.sum(dim=-1))
nll = F.nll_loss(
log_preds, target, reduction=self.reduction, weight=self.weight
)
return self.linear_combination(loss / n, nll)
class LabelSmoothing(nn.Module):
"""NLL loss with label smoothing.
"""
def __init__(self, smoothing=0.0):
"""Constructor for the LabelSmoothing module.
:param smoothing: label smoothing factor
"""
super(LabelSmoothing, self).__init__()
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
def forward(self, x, target):
logprobs = torch.nn.functional.log_softmax(x, dim=-1)
nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1))
nll_loss = nll_loss.squeeze(1)
smooth_loss = -logprobs.mean(dim=-1)
loss = self.confidence * nll_loss + self.smoothing * smooth_loss
return loss.mean()
检查
if __name__=="__main__":
# Wangleiofficial
crit = LabelSmoothingLoss(smoothing=0.3, reduction="mean")
predict = torch.FloatTensor([[0, 0.2, 0.7, 0.1, 0],
[0, 0.9, 0.2, 0.2, 1],
[1, 0.2, 0.7, 0.9, 1]])
v = crit(Variable(predict),
Variable(torch.LongTensor([2, 1, 0])))
print(v)
# NVIDIA
crit = LabelSmoothing(smoothing=0.3)
predict = torch.FloatTensor([[0, 0.2, 0.7, 0.1, 0],
[0, 0.9, 0.2, 0.2, 1],
[1, 0.2, 0.7, 0.9, 1]])
v = crit(Variable(predict),
Variable(torch.LongTensor([2, 1, 0])))
print(v)
tensor(1.3883)
tensor(1.3883)
答案 1 :(得分:1)
我不知道。
以下是PyTorch实现的两个示例:
LabelSmoothingLoss
module在OpenNMT框架中进行机器翻译
attention-is-all-you-need-pytorch
,重新实现Google的Attention is all you need paper
答案 2 :(得分:1)
标签平滑PyTorch的实现 参考:https://github.com/wangleiofficial/label-smoothing-pytorch
import torch.nn.functional as F
def linear_combination(x, y, epsilon):
return epsilon * x + (1 - epsilon) * y
def reduce_loss(loss, reduction='mean'):
return loss.mean() if reduction == 'mean' else loss.sum() if reduction == 'sum' else loss
class LabelSmoothingCrossEntropy(nn.Module):
def __init__(self, epsilon: float = 0.1, reduction='mean'):
super().__init__()
self.epsilon = epsilon
self.reduction = reduction
def forward(self, preds, target):
n = preds.size()[-1]
log_preds = F.log_softmax(preds, dim=-1)
loss = reduce_loss(-log_preds.sum(dim=-1), self.reduction)
nll = F.nll_loss(log_preds, target, reduction=self.reduction)
return linear_combination(loss / n, nll, self.epsilon)
答案 3 :(得分:0)
我一直在寻找像PyTorch中的其他损失类别一样从_Loss
派生的选项,并尊重诸如reduction
之类的基本参数。不幸的是我找不到直接的替代品,所以最终写了我自己的。但是,我尚未对此进行全面测试:
import torch
from torch.nn.modules.loss import _WeightedLoss
import torch.nn.functional as F
class SmoothCrossEntropyLoss(_WeightedLoss):
def __init__(self, weight=None, reduction='mean', smoothing=0.0):
super().__init__(weight=weight, reduction=reduction)
self.smoothing = smoothing
self.weight = weight
self.reduction = reduction
@staticmethod
def _smooth_one_hot(targets:torch.Tensor, n_classes:int, smoothing=0.0):
assert 0 <= smoothing < 1
with torch.no_grad():
targets = torch.empty(size=(targets.size(0), n_classes),
device=targets.device) \
.fill_(smoothing /(n_classes-1)) \
.scatter_(1, targets.data.unsqueeze(1), 1.-smoothing)
return targets
def forward(self, inputs, targets):
targets = SmoothCrossEntropyLoss._smooth_one_hot(targets, inputs.size(-1),
self.smoothing)
lsm = F.log_softmax(inputs, -1)
if self.weight is not None:
lsm = lsm * self.weight.unsqueeze(0)
loss = -(targets * lsm).sum(-1)
if self.reduction == 'sum':
loss = loss.sum()
elif self.reduction == 'mean':
loss = loss.mean()
return loss
其他选项:
答案 4 :(得分:0)
目前在 PyTorch 中没有官方实现,但已被提议作为高优先级 Feature Request #7455,并在 TorchVision Issue #2980 中单独提出。
在其他库中有许多实现:
NMTCritierion()._smooth_label()
snorkel.classification.cross_entropy_with_probs()
LabelSmoothingLoss()
以及一些非官方的实现/代码片段:
TensorFlow / Keras implementation
tf.keras.losses.CategoricalCrossentropy(label_smoothing)