对于从票务系统流式传输的数据,我们尝试实现以下目标
获取按状态和客户分组的未处理故障单数量。 简化的模式如下
Field | Type
-------------------------------------------------
ROWTIME | BIGINT (system)
ROWKEY | VARCHAR(STRING) (system)
ID | BIGINT
TICKET_ID | BIGINT
STATUS | VARCHAR(STRING)
TICKETCATEGORY_ID | BIGINT
SUBJECT | VARCHAR(STRING)
PRIORITY | VARCHAR(STRING)
STARTTIME | BIGINT
ENDTIME | BIGINT
CHANGETIME | BIGINT
REMINDTIME | BIGINT
DEADLINE | INTEGER
CONTACT_ID | BIGINT
我们想使用该数据来获取每个客户具有特定状态(打开,等待,进行中等)的票证数量。该数据必须在另一个主题中传递一条消息-该方案可能看起来像这样
Field | Type
-------------------------------------------------
ROWTIME | BIGINT (system)
ROWKEY | VARCHAR(STRING) (system)
CONTACT_ID | BIGINT
COUNT_OPEN | BIGINT
COUNT_WAITING | BIGINT
COUNT_CLOSED | BIGINT
我们计划使用此数据和其他数据来充实客户信息,并将充实的数据集发布到外部系统(例如elasticsearch)
获得第一部分非常容易-根据客户和状态对票进行分组。
select contact_id,status count(*) cnt from tickets group by contact_id,status;
但是现在我们被困住了-每个客户获得多行/消息,而我们只是不知道如何将它们转换为一条以contact_id为键的消息。
我们尝试了加入,但所有尝试均未成功。
示例
为所有按客户分组的“等待”状态的票创建表
create table waiting_tickets_by_cust with (partitions=12,value_format='AVRO')
as select contact_id, count(*) cnt from tickets where status='waiting' group by contact_id;
用于联接的密钥表
CREATE TABLE T_WAITING_REKEYED with WITH (KAFKA_TOPIC='WAITING_TICKETS_BY_CUST',
VALUE_FORMAT='AVRO',
KEY='contact_id');
将该表与客户表的左侧(外部)连接起来,将为我们提供所有正在等待票证的客户。
select c.id,w.cnt wcnt from T_WAITING_REKEYED w left join CRM_CONTACTS c on w.contact_id=c.id;
但是,我们将需要所有客户,且等待计数为NULL才能使用该结果,从而导致另一个票证状态为PROCESSING的联接。 因为我们只有等待中的客户,所以只有那些同时具有这两种状态的客户才能得到我们。
ksql> select c.*,t.cnt from T_PROCESSING_REKEYED t left join cust_ticket_tmp1 c on t.contact_id=c.id;
null | null | null | null | 1
1555261086669 | 1472 | 1472 | 0 | 1
1555261086669 | 1472 | 1472 | 0 | 1
null | null | null | null | 1
1555064371937 | 1474 | 1474 | 1 | 1
null | null | null | null | 1
1555064371937 | 1474 | 1474 | 1 | 1
null | null | null | null | 1
null | null | null | null | 1
null | null | null | null | 1
1555064372018 | 3 | 3 | 5 | 6
1555064372018 | 3 | 3 | 5 | 6
那么执行此操作的正确方法是什么?
这是KSQL 5.2.1
谢谢
编辑:
以下是一些示例数据
创建了一个将数据限制为测试帐户的主题
CREATE STREAM tickets_filtered
WITH (
PARTITIONS=12,
VALUE_FORMAT='JSON') AS
SELECT id,
contact_id,
subject,
status,
TIMESTAMPTOSTRING(changetime, 'yyyy-MM-dd HH:mm:ss.SSS') AS timestring
FROM tickets where contact_id=1472
PARTITION BY contact_id;
00:06:44 1 $ kafkacat-dev -C -o beginning -t TICKETS_FILTERED
{"ID":2216,"CONTACT_ID":1472,"SUBJECT":"Test Bodenbach","STATUS":"closed","TIMESTRING":"2012-11-08 10:34:30.000"}
{"ID":8945,"CONTACT_ID":1472,"SUBJECT":"sync-test","STATUS":"waiting","TIMESTRING":"2019-04-16 23:07:01.000"}
{"ID":8945,"CONTACT_ID":1472,"SUBJECT":"sync-test","STATUS":"processing","TIMESTRING":"2019-04-16 23:52:08.000"}
Changing and adding something in the ticketing-system...
{"ID":8945,"CONTACT_ID":1472,"SUBJECT":"sync-test","STATUS":"waiting","TIMESTRING":"2019-04-17 00:10:38.000"}
{"ID":8952,"CONTACT_ID":1472,"SUBJECT":"another sync ticket","STATUS":"new","TIMESTRING":"2019-04-17 00:11:23.000"}
{"ID":8952,"CONTACT_ID":1472,"SUBJECT":"another sync ticket","STATUS":"close-request","TIMESTRING":"2019-04-17 00:12:04.000"}
我们要根据这些数据创建一个主题,消息看起来像这样
{"CONTACT_ID":1472,"TICKETS_CLOSED":1,"TICKET_WAITING":1,"TICKET_CLOSEREQUEST":1,"TICKET_PROCESSING":0}
答案 0 :(得分:0)
可以通过建立一个表(用于状态),然后在该表上进行汇总来做到这一点。
设置测试数据
kafkacat -b localhost -t tickets -P <<EOF
{"ID":2216,"CONTACT_ID":1472,"SUBJECT":"Test Bodenbach","STATUS":"closed","TIMESTRING":"2012-11-08 10:34:30.000"}
{"ID":8945,"CONTACT_ID":1472,"SUBJECT":"sync-test","STATUS":"waiting","TIMESTRING":"2019-04-16 23:07:01.000"}
{"ID":8945,"CONTACT_ID":1472,"SUBJECT":"sync-test","STATUS":"processing","TIMESTRING":"2019-04-16 23:52:08.000"}
{"ID":8945,"CONTACT_ID":1472,"SUBJECT":"sync-test","STATUS":"waiting","TIMESTRING":"2019-04-17 00:10:38.000"}
{"ID":8952,"CONTACT_ID":1472,"SUBJECT":"another sync ticket","STATUS":"new","TIMESTRING":"2019-04-17 00:11:23.000"}
{"ID":8952,"CONTACT_ID":1472,"SUBJECT":"another sync ticket","STATUS":"close-request","TIMESTRING":"2019-04-17 00:12:04.000"}
EOF
预览主题数据
ksql> PRINT 'tickets' FROM BEGINNING;
Format:JSON
{"ROWTIME":1555511270573,"ROWKEY":"null","ID":2216,"CONTACT_ID":1472,"SUBJECT":"Test Bodenbach","STATUS":"closed","TIMESTRING":"2012-11-08 10:34:30.000"}
{"ROWTIME":1555511270573,"ROWKEY":"null","ID":8945,"CONTACT_ID":1472,"SUBJECT":"sync-test","STATUS":"waiting","TIMESTRING":"2019-04-16 23:07:01.000"}
{"ROWTIME":1555511270573,"ROWKEY":"null","ID":8945,"CONTACT_ID":1472,"SUBJECT":"sync-test","STATUS":"processing","TIMESTRING":"2019-04-16 23:52:08.000"}
{"ROWTIME":1555511270573,"ROWKEY":"null","ID":8945,"CONTACT_ID":1472,"SUBJECT":"sync-test","STATUS":"waiting","TIMESTRING":"2019-04-17 00:10:38.000"}
{"ROWTIME":1555511270573,"ROWKEY":"null","ID":8952,"CONTACT_ID":1472,"SUBJECT":"another sync ticket","STATUS":"new","TIMESTRING":"2019-04-17 00:11:23.000"}
{"ROWTIME":1555511270573,"ROWKEY":"null","ID":8952,"CONTACT_ID":1472,"SUBJECT":"another sync ticket","STATUS":"close-request","TIMESTRING":"2019-04-17 00:12:04.000"}
注册流
CREATE STREAM TICKETS (ID INT,
CONTACT_ID VARCHAR,
SUBJECT VARCHAR,
STATUS VARCHAR,
TIMESTRING VARCHAR)
WITH (KAFKA_TOPIC='tickets',
VALUE_FORMAT='JSON');
查询数据
ksql> SET 'auto.offset.reset' = 'earliest';
ksql> SELECT * FROM TICKETS;
1555502643806 | null | 2216 | 1472 | Test Bodenbach | closed | 2012-11-08 10:34:30.000
1555502643806 | null | 8945 | 1472 | sync-test | waiting | 2019-04-16 23:07:01.000
1555502643806 | null | 8945 | 1472 | sync-test | processing | 2019-04-16 23:52:08.000
1555502643806 | null | 8945 | 1472 | sync-test | waiting | 2019-04-17 00:10:38.000
1555502643806 | null | 8952 | 1472 | another sync ticket | new | 2019-04-17 00:11:23.000
1555502643806 | null | 8952 | 1472 | another sync ticket | close-request | 2019-04-17 00:12:04.000
在这一点上,我们可以使用CASE
来枢纽聚合:
SELECT CONTACT_ID,
SUM(CASE WHEN STATUS='new' THEN 1 ELSE 0 END) AS TICKETS_NEW,
SUM(CASE WHEN STATUS='processing' THEN 1 ELSE 0 END) AS TICKETS_PROCESSING,
SUM(CASE WHEN STATUS='waiting' THEN 1 ELSE 0 END) AS TICKETS_WAITING,
SUM(CASE WHEN STATUS='close-request' THEN 1 ELSE 0 END) AS TICKETS_CLOSEREQUEST ,
SUM(CASE WHEN STATUS='closed' THEN 1 ELSE 0 END) AS TICKETS_CLOSED
FROM TICKETS
GROUP BY CONTACT_ID;
1472 | 1 | 1 | 2 | 1 | 1
但是,您会注意到答案与预期不符。这是因为我们正在计算所有六个输入事件。
让我们看一下ID为8945
的单个故障单-它经历了三个状态更改(waiting
-> processing
-> waiting
),每个状态更改都包含在骨料。我们可以使用一个简单的谓词来验证这一点:
SELECT CONTACT_ID,
SUM(CASE WHEN STATUS='new' THEN 1 ELSE 0 END) AS TICKETS_NEW,
SUM(CASE WHEN STATUS='processing' THEN 1 ELSE 0 END) AS TICKETS_PROCESSING,
SUM(CASE WHEN STATUS='waiting' THEN 1 ELSE 0 END) AS TICKETS_WAITING,
SUM(CASE WHEN STATUS='close-request' THEN 1 ELSE 0 END) AS TICKETS_CLOSEREQUEST ,
SUM(CASE WHEN STATUS='closed' THEN 1 ELSE 0 END) AS TICKETS_CLOSED
FROM TICKETS
WHERE ID=8945
GROUP BY CONTACT_ID;
1472 | 0 | 1 | 2 | 0 | 0
我们真正想要的是每张票证的当前状态。因此,重新分配票证ID上的数据:
CREATE STREAM TICKETS_BY_ID AS SELECT * FROM TICKETS PARTITION BY ID;
CREATE TABLE TICKETS_TABLE (ID INT,
CONTACT_ID INT,
SUBJECT VARCHAR,
STATUS VARCHAR,
TIMESTRING VARCHAR)
WITH (KAFKA_TOPIC='TICKETS_BY_ID',
VALUE_FORMAT='JSON',
KEY='ID');
比较事件流与当前状态
事件流(KSQL流)
ksql> SELECT ID, TIMESTRING, STATUS FROM TICKETS;
2216 | 2012-11-08 10:34:30.000 | closed
8945 | 2019-04-16 23:07:01.000 | waiting
8945 | 2019-04-16 23:52:08.000 | processing
8945 | 2019-04-17 00:10:38.000 | waiting
8952 | 2019-04-17 00:11:23.000 | new
8952 | 2019-04-17 00:12:04.000 | close-request
当前状态(KSQL表)
ksql> SELECT ID, TIMESTRING, STATUS FROM TICKETS_TABLE;
2216 | 2012-11-08 10:34:30.000 | closed
8945 | 2019-04-17 00:10:38.000 | waiting
8952 | 2019-04-17 00:12:04.000 | close-request
我们想要一个表的汇总,我们想要运行与上面相同的SUM(CASE…)…GROUP BY
技巧,但要基于每张票证的当前状态,而不是每个事件:
SELECT CONTACT_ID,
SUM(CASE WHEN STATUS='new' THEN 1 ELSE 0 END) AS TICKETS_NEW,
SUM(CASE WHEN STATUS='processing' THEN 1 ELSE 0 END) AS TICKETS_PROCESSING,
SUM(CASE WHEN STATUS='waiting' THEN 1 ELSE 0 END) AS TICKETS_WAITING,
SUM(CASE WHEN STATUS='close-request' THEN 1 ELSE 0 END) AS TICKETS_CLOSEREQUEST ,
SUM(CASE WHEN STATUS='closed' THEN 1 ELSE 0 END) AS TICKETS_CLOSED
FROM TICKETS_TABLE
GROUP BY CONTACT_ID;
这给了我们我们想要的:
1472 | 0 | 0 | 1 | 1 | 1
让我们将另一个故障单的事件提供给主题,并观察表状态如何变化。 状态更改时,表中的行会重新发出;您还可以取消SELECT
并重新运行以仅查看当前状态。
对数据进行抽样以亲自尝试:
{"ID":8946,"CONTACT_ID":42,"SUBJECT":"","STATUS":"new","TIMESTRING":"2019-04-16 23:07:01.000"}
{"ID":8946,"CONTACT_ID":42,"SUBJECT":"","STATUS":"processing","TIMESTRING":"2019-04-16 23:07:01.000"}
{"ID":8946,"CONTACT_ID":42,"SUBJECT":"","STATUS":"waiting","TIMESTRING":"2019-04-16 23:07:01.000"}
{"ID":8946,"CONTACT_ID":42,"SUBJECT":"","STATUS":"processing","TIMESTRING":"2019-04-16 23:07:01.000"}
{"ID":8946,"CONTACT_ID":42,"SUBJECT":"","STATUS":"waiting","TIMESTRING":"2019-04-16 23:07:01.000"}
{"ID":8946,"CONTACT_ID":42,"SUBJECT":"","STATUS":"closed","TIMESTRING":"2019-04-16 23:07:01.000"}
{"ID":8946,"CONTACT_ID":42,"SUBJECT":"","STATUS":"close-request","TIMESTRING":"2019-04-16 23:07:01.000"}
如果您想进一步尝试,可以使用Mockaroo生成的其他伪数据流,通过awk
进行管道传输以减慢它的速度,以便您看到对生成的聚合的影响当每条消息到达时:
while [ 1 -eq 1 ]
do curl -s "https://api.mockaroo.com/api/f2d6c8a0?count=1000&key=ff7856d0" | \
awk '{print $0;system("sleep 2");}' | \
kafkacat -b localhost -t tickets -P
done