我在100x120的图像上训练了CNN,并创建了以下生成器:
train_datagen = ImageDataGenerator(
rescale = 1. / 255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(
rescale=1/255)
#Apply them
train_generator = train_datagen.flow_from_directory(
directory = train_data_dir,
target_size=(parameters["img_width"], parameters["img_height"]),
batch_size = parameters["batch_size"],
class_mode= "categorical",
subset = "training",
color_mode = "rgb",
seed = 42)
test_generator = test_datagen.flow_from_directory(
directory = test_data_dir,
target_size = (parameters["img_width"], parameters["img_height"]),
color_mode = "rgb",
batch_size=1,
class_mode = None,
shuffle = False,
seed = 41)
因此,我将测试不同图像上的表现为:
# Method 1
test_generator.reset()
pred = model.predict_generator(test_generator,verbose = 1, steps = 1)
predicted_class_indices = np.argmax(pred, axis = 1)
# Convert the dictionary
labels = (train_generator.class_indices)
labels = dict((v,k) for k,v in labels.items())
predictions = [labels[k] for k in predicted_class_indices]
但是,如果我想使用以下方法对同一张图片生成预测:
# Method 2
crop_img = cv2.resize(img,(100, 120))
crop_img = np.reshape(crop_img,[1, 100, 120, 3])
crop_img = crop_img.astype('float32')
crop_img /= 255
# ID
pred = model.predict(crop_img)
predicted_class_indices = np.argmax(pred, axis = 1)
prediction = [labels[k] for k in predicted_class_indices]
我得到一个不同的结果。这可能是由于什么造成的?
答案 0 :(得分:0)
Keras的ImageDataGenerator uses PIL and not openCV under the hood用于加载和调整图像大小。使用双线性插值(cv2.resize的default)调整大小时,ImageDataGenerator默认使用最近的邻居插值。
您可以使用调整大小的方法直到获得相同的结果,或者使用keras预处理中的load_img
和img_to_array
便利函数来确保进行与之前完全相同的预处理在训练期间:
from keras.prepropressing.image import load_img, img_to_array
img = load_img(path_to_img, target_size=(100, 120)
img = img_to_array(img) / 255.
model.predict(img)