计算单词频率需要很多时间。如何优化此代码? 下面的功能与countvectorizer的功能相同。计算所有256字符串中的六进制字符串。
我有16 GB RAM,但无法对其进行优化。我不是CS / IT学生,所以对操作系统了解不多。
到目前为止,我想出了pyspark,chunksize之类的东西,但不确定它是否在这里可以工作以及如何使其工作?
files = os.listdir('byteFiles')
filenames2=[]
feature_matrix = np.zeros((len(files),257),dtype=int)
k=0
#program to convert into bag of words of bytefiles
#this is custom-built bag of words this is unigram bag of words
byte_feature_file=open('result.csv','w+')
byte_feature_file.write("ID,0,1,2,3,4,5,6,7,8,9,0a,0b,0c,0d,0e,0f,10,11,12,13,14,15,16,17,18,19,1a,1b,1c,1d,1e,1f,20,21,22,23,24,25,26,27,28,29,2a,2b,2c,2d,2e,2f,30,31,32,33,34,35,36,37,38,39,3a,3b,3c,3d,3e,3f,40,41,42,43,44,45,46,47,48,49,4a,4b,4c,4d,4e,4f,50,51,52,53,54,55,56,57,58,59,5a,5b,5c,5d,5e,5f,60,61,62,63,64,65,66,67,68,69,6a,6b,6c,6d,6e,6f,70,71,72,73,74,75,76,77,78,79,7a,7b,7c,7d,7e,7f,80,81,82,83,84,85,86,87,88,89,8a,8b,8c,8d,8e,8f,90,91,92,93,94,95,96,97,98,99,9a,9b,9c,9d,9e,9f,a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,aa,ab,ac,ad,ae,af,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf,c0,c1,c2,c3,c4,c5,c6,c7,c8,c9,ca,cb,cc,cd,ce,cf,d0,d1,d2,d3,d4,d5,d6,d7,d8,d9,da,db,dc,dd,de,df,e0,e1,e2,e3,e4,e5,e6,e7,e8,e9,ea,eb,ec,ed,ee,ef,f0,f1,f2,f3,f4,f5,f6,f7,f8,f9,fa,fb,fc,fd,fe,ff,??")
for file in files:
filenames2.append(f)
byte_feature_file.write(file+",")
if(file.endswith("txt")):
with open('byteFiles/'+file,"r") as byte_flie:
for lines in byte_flie:
line=lines.rstrip().split(" ")
for hex_code in line:
if hex_code=='??':
feature_matrix[k][256]+=1
else:
feature_matrix[k][int(hex_code,16)]+=1
byte_flie.close()
for i in feature_matrix[k]:
byte_feature_file.write(str(i)+",")
byte_feature_file.write("\n")
k += 1
byte_feature_file.close()