关键错误:[Int64Index ...] dtype ='int64]都不在列中

时间:2019-04-13 15:40:15

标签: python pandas numpy scikit-learn

我正在尝试使用np.random.shuffle()方法对索引进行混洗,但是我不断收到我不理解的错误。如果有人可以帮助我解决这个问题,我将不胜感激。谢谢!

一开始我将raw_csv_data变量设为变量时,我曾尝试使用delimiter =','和delim_whitespace = 0,因为我认为这是另一个问题的解决方案,但它始终抛出相同的错误

    import pandas as pd 
    import numpy as np 
    from sklearn.preprocessing import StandardScaler

    #%%
    raw_csv_data= pd.read_csv('Absenteeism-data.csv')
    print(raw_csv_data)
    #%%
    df= raw_csv_data.copy()
    print(display(df))
    #%%
    pd.options.display.max_columns=None
    pd.options.display.max_rows=None
    print(display(df))
    #%%
    print(df.info())
    #%%
    df=df.drop(['ID'], axis=1)

    #%%
    print(display(df.head()))

    #%%
    #Our goal is to see who is more likely to be absent. Let's define
    #our targets from our dependent variable, Absenteeism Time in Hours
    print(df['Absenteeism Time in Hours'])
    print(df['Absenteeism Time in Hours'].median())
    #%%
    targets= np.where(df['Absenteeism Time in Hours']>df['Absenteeism Time 
    in Hours'].median(),1,0)
    #%%
    print(targets)
    #%%
    df['Excessive Absenteeism']= targets
    #%%
    print(df.head())

    #%%
    #Let's Separate the Day and Month Values to see if there is 
    correlation
    #between Day of week/month with absence
    print(type(df['Date'][0]))
    #%%
    df['Date']= pd.to_datetime(df['Date'], format='%d/%m/%Y')
    #%%
    print(df['Date'])
    print(type(df['Date'][0]))
    #%%
    #Extracting the Month Value
    print(df['Date'][0].month)
    #%%
    list_months=[]
    print(list_months)
    #%%
    print(df.shape)
    #%%
    for i in range(df.shape[0]):
        list_months.append(df['Date'][i].month)
    #%%
    print(list_months)
    #%%
    print(len(list_months))
    #%%
    #Let's Create a Month Value Column for df
    df['Month Value']= list_months
    #%%
    print(df.head())
    #%%
    #Now let's extract the day of the week from date
    df['Date'][699].weekday()
    #%%
    def date_to_weekday(date_value):
        return date_value.weekday()
    #%%
    df['Day of the Week']= df['Date'].apply(date_to_weekday)
    #%%
    print(df.head())
    #%%
    df= df.drop(['Date'], axis=1)
    #%%
    print(df.columns.values)
    #%%
    reordered_columns= ['Reason for Absence', 'Month Value','Day of the 
    Week','Transportation Expense', 'Distance to Work', 'Age',
     'Daily Work Load Average', 'Body Mass Index', 'Education', 
    'Children', 
    'Pets',
     'Absenteeism Time in Hours', 'Excessive Absenteeism']
    #%%
    df=df[reordered_columns]
    print(df.head())
    #%%
    #First Checkpoint
    df_date_mod= df.copy()
    #%%
    print(df_date_mod)

    #%%
    #Let's Standardize our inputs, ignoring the Reasons and Education 
    Columns
    #Because they are labelled by a separate categorical criteria, not 
    numerically
    print(df_date_mod.columns.values)
    #%%
    unscaled_inputs= df_date_mod.loc[:, ['Month Value','Day of the 
    Week','Transportation Expense','Distance to Work','Age','Daily Work 
    Load 
    Average','Body Mass Index','Children','Pets','Absenteeism Time in 
    Hours']]
    #%%
    print(display(unscaled_inputs))
    #%%
    absenteeism_scaler= StandardScaler()
    #%%
    absenteeism_scaler.fit(unscaled_inputs)
    #%%
    scaled_inputs= absenteeism_scaler.transform(unscaled_inputs)
    #%%
    print(display(scaled_inputs))
    #%%
    print(scaled_inputs.shape)
    #%%
    scaled_inputs= pd.DataFrame(scaled_inputs, columns=['Month Value','Day 
    of the Week','Transportation Expense','Distance to Work','Age','Daily 
    Work Load Average','Body Mass Index','Children','Pets','Absenteeism 
    Time 
    in Hours'])
    print(display(scaled_inputs))
    #%%
    df_date_mod= df_date_mod.drop(['Month Value','Day of the 
    Week','Transportation Expense','Distance to Work','Age','Daily Work 
    Load Average','Body Mass Index','Children','Pets','Absenteeism Time in 
    Hours'], axis=1)
    print(display(df_date_mod))
    #%%
    df_date_mod=pd.concat([df_date_mod,scaled_inputs], axis=1)
    print(display(df_date_mod))
    #%%
    df_date_mod= df_date_mod[reordered_columns]
    print(display(df_date_mod.head()))
    #%%
    #Checkpoint
    df_date_scale_mod= df_date_mod.copy()
    print(display(df_date_scale_mod.head()))
    #%%
    #Let's Analyze the Reason for Absence Category
    print(df_date_scale_mod['Reason for Absence'])
    #%%
    print(df_date_scale_mod['Reason for Absence'].min())
    print(df_date_scale_mod['Reason for Absence'].max())
    #%%
    print(df_date_scale_mod['Reason for Absence'].unique())
    #%%
    print(len(df_date_scale_mod['Reason for Absence'].unique()))
    #%%
    print(sorted(df['Reason for Absence'].unique()))
    #%%
    reason_columns= pd.get_dummies(df['Reason for Absence'])
    print(reason_columns)
    #%%
    reason_columns['check']= reason_columns.sum(axis=1)
    print(reason_columns)
    #%%
    print(reason_columns['check'].sum(axis=0))
    #%%
    print(reason_columns['check'].unique())
    #%%
    reason_columns=reason_columns.drop(['check'], axis=1)
    print(reason_columns)
    #%%
    reason_columns=pd.get_dummies(df_date_scale_mod['Reason for Absence'], 
    drop_first=True)
    print(reason_columns)
    #%%
    print(df_date_scale_mod.columns.values)
    #%%
    print(reason_columns.columns.values)
    #%%
    df_date_scale_mod= df_date_scale_mod.drop(['Reason for Absence'], 
    axis=1)
    print(df_date_scale_mod)
    #%%
    reason_type_1= reason_columns.loc[:, 1:14].max(axis=1)
    reason_type_2= reason_columns.loc[:, 15:17].max(axis=1)
    reason_type_3= reason_columns.loc[:, 18:21].max(axis=1)
    reason_type_4= reason_columns.loc[:, 22:].max(axis=1)
    #%%
    print(reason_type_1)
    print(reason_type_2)
    print(reason_type_3)
    print(reason_type_4)
    #%%
    print(df_date_scale_mod.head())
    #%%
    df_date_scale_mod= pd.concat([df_date_scale_mod, 
    reason_type_1,reason_type_2, reason_type_3, reason_type_4], axis=1)
    print(df_date_scale_mod.head())
    #%%
    print(df_date_scale_mod.columns.values)
    #%%
    column_names= ['Month Value','Day of the Week','Transportation 
    Expense',
     'Distance to Work','Age','Daily Work Load Average','Body Mass Index',
     'Education','Children','Pets','Absenteeism Time in Hours',
     'Excessive Absenteeism', 'Reason_1', 'Reason_2', 'Reason_3', 
     'Reason_4']

    df_date_scale_mod.columns= column_names
    print(df_date_scale_mod.head())
    #%%
    column_names_reordered= ['Reason_1', 'Reason_2', 'Reason_3', 
    'Reason_4','Month Value','Day of the Week','Transportation Expense',
     'Distance to Work','Age','Daily Work Load Average','Body Mass Index',
     'Education','Children','Pets','Absenteeism Time in Hours',
     'Excessive Absenteeism']

    df_date_scale_mod=df_date_scale_mod[column_names_reordered]
    print(display(df_date_scale_mod.head()))
    #%%
    #Checkpoint
    df_date_scale_mod_reas= df_date_scale_mod.copy()
    print(df_date_scale_mod_reas.head())
    #%%
    #Let's Look at the Education column now
    print(df_date_scale_mod_reas['Education'].unique())
    #This shows us that education is rated from 1-4 based on level
    #of completion
    #%%
    print(df_date_scale_mod_reas['Education'].value_counts())
    #The overwhelming majority of workers are highschool educated, while 
    the 
    #rest have higher degrees
    #%%
    #We'll create our dummy variables as highschool and higher education
    df_date_scale_mod_reas['Education']= 
    df_date_scale_mod_reas['Education'].map({1:0, 2:1, 3:1, 4:1})
    #%%
    print(df_date_scale_mod_reas['Education'].unique())
    #%%
    print(df_date_scale_mod_reas['Education'].value_counts())
    #%%
    #Checkpoint
    df_preprocessed= df_date_scale_mod_reas.copy()
    print(display(df_preprocessed.head()))
    #%%
    #%%
    #Split Inputs from targets
    scaled_inputs_all= df_preprocessed.loc[:,'Reason_1':'Absenteeism Time 
    in 
    Hours']
    print(display(scaled_inputs_all.head()))
    print(scaled_inputs_all.shape)
    #%%
    targets_all= df_preprocessed.loc[:,'Excessive Absenteeism']
    print(display(targets_all.head()))
    print(targets_all.shape)
    #%%
    #Shuffle Inputs and targets
    shuffled_indices= np.arange(scaled_inputs_all.shape[0])
    np.random.shuffle(shuffled_indices)
    shuffled_inputs= scaled_inputs_all[shuffled_indices]
    shuffled_targets= targets_all[shuffled_indices]
  

这是我尝试改组索引时不断遇到的错误:

KeyError                                  Traceback (most recent call last)
 in 
      1 shuffled_indices= np.arange(scaled_inputs_all.shape[0])
      2 np.random.shuffle(shuffled_indices)
----> 3 shuffled_inputs= scaled_inputs_all[shuffled_indices]
      4 shuffled_targets= targets_all[shuffled_indices]
     

〜\ Anaconda3 \ lib \ site-packages \ pandas \ core \ frame.py在    getitem ((自身,键))2932键=列表(键)2933索引器= self.loc._convert_to_indexer(键,轴= 1,   -> 2934 raise_missing = True)2935 2936#take()不接受   布尔索引器

     

〜\ Anaconda3 \ lib \ site-packages \ pandas \ core \ indexing.py在   _convert_to_indexer(自身,obj,轴,is_setter,raise_missing)1352 kwargs = {'raise_missing':如果is_setter则为true 1353
  引发}   -> 1354返回self._get_listlike_indexer(obj,axis,** kwargs)[1] 1355其他:1356试试:

     

〜\ Anaconda3 \ lib \ site-packages \ pandas \ core \ indexing.py在   _get_listlike_indexer(自身,键,轴,提升缺失)1159自我._validate_read_indexer(keyarr,indexer,1160
  o._get_axis_number(axis),   -> 1161raise_missing = raise_missing)1162返回关键字,索引器
  1163

     

〜\ Anaconda3 \ lib \ site-packages \ pandas \ core \ indexing.py在   _validate_read_indexer(自身,键,索引器,轴,raise_missing)1244提高KeyError(1245
  u“ [{key}]都不在[{axis}]中” .format(   -> 1246 key = key,axis = self.obj._get_axis_name(axis))1247 1248#我们   (暂时)允许使用.loc丢失一些键,

中除外      

KeyError:“ [Int64Index([560,320,405,141,154,370,656,   26、444、307,\ n ... \ n 429、542、676、588、315,   284、293、607、197、250],\ n dtype ='int64',长度= 700)]是   在[列]”中

6 个答案:

答案 0 :(得分:2)

您使用scaled_inputs_all创建了loc数据框 函数,因此很可能不包含连续索引。

另一方面,您将shuffled_indices创建为随机播放 来自一系列连续数字。

请记住,scaled_inputs_all[shuffled_indices]获取行 的scaled_inputs_all索引值等于 shuffled_indices的元素。

也许您应该写:

scaled_inputs_all.iloc[shuffled_indices]

请注意,iloc提供基于整数位置的索引,无论 索引值,也就是您所需要的。

答案 1 :(得分:1)

遇到相同的错误:

org.springframework.kafka.listener.adapter.RecordFilterStrategy

通过将数据框保存到本地文件并打开它来解决,

如下所示:

KeyError: "None of [Int64Index([26], dtype='int64')] are in the [index]"

答案 2 :(得分:1)

根据列值条件删除具有索引的行时,发生以下错误:

返回self._engine.get_loc(key)文件“ pandas / _libs / index.pyx”,行 107,在pandas._libs.index.IndexEngine.get_loc文件中 “ pandas / _libs / index.pyx”,第131行 pandas._libs.index.IndexEngine.get_loc文件 “ pandas / _libs / hashtable_class_helper.pxi”,第992行,在 pandas._libs.hashtable.Int64HashTable.get_item文件 “ pandas / _libs / hashtable_class_helper.pxi”,第998行,在 pandas._libs.hashtable.Int64HashTable.get_item KeyError:226

在处理上述异常期间,发生了另一个异常:

回溯(最近通话最近一次):

要解决此问题,请列出索引并立即删除行,如下所示:

df.drop(index=list1,labels=None, axis=0, inplace=True,columns=None, level=None, errors='raise')

答案 3 :(得分:1)

在使用KFOLD进行机器学习时,可能还会有人遇到相同的错误。

解决方案如下:

Click here to watch solutinon

您需要使用iloc:

 X_train, X_test = X.iloc[train_index], X.iloc[test_index]

 y_train, y_test = y.iloc[train_index], y.iloc[test_index]

答案 4 :(得分:0)

我也有这个问题。我通过将数据框和序列更改为数组来解决它。

尝试以下代码行:

scaled_inputs_all.iloc[shuffled_indices].values 

答案 5 :(得分:0)

如果在从数据框中删除行后重置索引,这应该会停止关键错误。

您可以通过在运行 df.drop 后运行它来实现:

df = df.reset_index(drop=True)

或者,等效地:

df.reset_index(drop=True, inplace=True)