我正在尝试使用Keras创建语音情感识别模型,我已经完成了所有代码并训练了模型。它的验证率约为50%,并且过拟合。
当我将Model.predict()与看不见的数据一起使用时,似乎很难区分“中性”,“平静”,“快乐”和“惊讶”,但似乎能够正确预测“愤怒”在大多数情况下-我认为是因为音高或其他方面存在明显差异。
我想这可能是我没有从这些情绪中获得足够的功能,这将有助于模型区分它们。
目前,我正在使用Librosa并将音频覆盖到MFCC。即使使用Librosa,我还有其他方法可以提取模型的特征,以帮助其更好地区分“中性”,“平静”,“快乐”,“惊讶”等吗?
一些特征提取代码:
wav_clip, sample_rate = librosa.load(file_path, duration=3, mono=True, sr=None)
mfcc = librosa.feature.mfcc(wav_clip, sample_rate)
此外,这是1400个样本。
答案 0 :(得分:1)
一些入门知识:
librosa
中的第一个系数为您提供AFAIK偏移量。我建议您绘制特征与标签之间的关联关系以及它们之间的重叠程度,我想其中有些很容易混淆。查找是否有任何功能可以区分您的班级。不要通过运行模型来执行此操作,请先进行外观检查。以实际功能为准!您认为推销应该起至关重要的作用是正确的。我建议您检出aubio-它具有Python绑定。
Yaafe还提供了出色的功能选择。
您可能会轻松获得150多种功能。您可能想要降低问题的维数,甚至将其压缩到2d并查看是否可以以某种方式分离类。 Here是我自己的Dash示例。
最后但并非最不重要的一点是,一些基本代码可从音频中提取频率。在这种情况下,我还要尝试找到三个峰值频率。
import numpy as np
def spectral_statistics(y: np.ndarray, fs: int, lowcut: int = 0) -> dict:
"""
Compute selected statistical properties of spectrum
:param y: 1-d signsl
:param fs: sampling frequency [Hz]
:param lowcut: lowest frequency [Hz]
:return: spectral features (dict)
"""
spec = np.abs(np.fft.rfft(y))
freq = np.fft.rfftfreq(len(y), d=1 / fs)
idx = int(lowcut / fs * len(freq) * 2)
spec = np.abs(spec[idx:])
freq = freq[idx:]
amp = spec / spec.sum()
mean = (freq * amp).sum()
sd = np.sqrt(np.sum(amp * ((freq - mean) ** 2)))
amp_cumsum = np.cumsum(amp)
median = freq[len(amp_cumsum[amp_cumsum <= 0.5]) + 1]
mode = freq[amp.argmax()]
Q25 = freq[len(amp_cumsum[amp_cumsum <= 0.25]) + 1]
Q75 = freq[len(amp_cumsum[amp_cumsum <= 0.75]) + 1]
IQR = Q75 - Q25
z = amp - amp.mean()
w = amp.std()
skew = ((z ** 3).sum() / (len(spec) - 1)) / w ** 3
kurt = ((z ** 4).sum() / (len(spec) - 1)) / w ** 4
top_peaks_ordered_by_power = {'stat_freq_peak_by_power_1': 0, 'stat_freq_peak_by_power_2': 0, 'stat_freq_peak_by_power_3': 0}
top_peaks_ordered_by_order = {'stat_freq_peak_by_order_1': 0, 'stat_freq_peak_by_order_2': 0, 'stat_freq_peak_by_order_3': 0}
amp_smooth = signal.medfilt(amp, kernel_size=15)
peaks, height_d = signal.find_peaks(amp_smooth, distance=100, height=0.002)
if peaks.size != 0:
peak_f = freq[peaks]
for peak, peak_name in zip(peak_f, top_peaks_ordered_by_order.keys()):
top_peaks_ordered_by_order[peak_name] = peak
idx_three_top_peaks = height_d['peak_heights'].argsort()[-3:][::-1]
top_3_freq = peak_f[idx_three_top_peaks]
for peak, peak_name in zip(top_3_freq, top_peaks_ordered_by_power.keys()):
top_peaks_ordered_by_power[peak_name] = peak
specprops = {
'stat_mean': mean,
'stat_sd': sd,
'stat_median': median,
'stat_mode': mode,
'stat_Q25': Q25,
'stat_Q75': Q75,
'stat_IQR': IQR,
'stat_skew': skew,
'stat_kurt': kurt
}
specprops.update(top_peaks_ordered_by_power)
specprops.update(top_peaks_ordered_by_order)
return specprops