Pytorch中的require_grad = True的累积最大值的矢量化实现

时间:2019-04-13 12:47:55

标签: python pytorch

是否有更好/更快的方法在Pytorch中实现以下代码,同时又避免了循环并仍保持计算图完整无缺?

def cumulative_max(X, dim=-1):
    out = X.clone()
    if dim < 0:
        dim += X.dim()
    leading_indices = (slice(None), ) * dim
    n_iters = X.size(dim)
    for idx in range(1, n_iters):
        out[leading_indices + (idx, )] = torch.max(out[leading_indices + (idx - 1, )], X[leading_indices + (idx, )])
    return out

0 个答案:

没有答案