我想计算PI的值直到50位。
如何在java中为50个小数位执行此操作?
答案 0 :(得分:3)
您无法使用默认数据类型,因为您需要50位数:50 / log(2)* log(10)= 166位。这里BigDecimal是您可以使用的一种类型。但是你应该记住,22/7只是pi的近似值,为了得到50个数字,你需要更好的公式(例如蒙特卡罗方法,泰勒系列,......)。
答案 1 :(得分:2)
您正在使用双变量,而应使用具有更高精度的东西。查看BigDecimal
类。
答案 2 :(得分:2)
public class PiReCalc {
public static final int N = 1000; // # of terms
public static void main(String[] args) {
BigDecimal sum = new BigDecimal(0); // final sum
BigDecimal term = new BigDecimal(0); // term without sign
BigDecimal sign = new BigDecimal(1.0); // sign on each term
BigDecimal one = new BigDecimal(1.0);
BigDecimal two = new BigDecimal(2.0);
for (int k = 0; k < N; k++) {
BigDecimal count = new BigDecimal(k);
//term = 1.0/(2.0*k + 1.0);
BigDecimal temp1 = two.multiply(count);
BigDecimal temp2 = temp1.add(one);
term = one.divide(temp2,50,BigDecimal.ROUND_FLOOR);
//sum = sum + sign*term;
BigDecimal temp3 = sign.multiply(term);
sum = sum.add(temp3);
sign = sign.negate();
}
BigDecimal pi = new BigDecimal(0);
BigDecimal four = new BigDecimal(4);
pi = sum.multiply(four);
System.out.println("Calculated pi (approx., " + N + " terms and 50 Decimal Places): " + pi);
System.out.println("Actual pi: " + Math.PI);
}
}
输出
计算pi(约1000个术语和50个小数位):3.14059265383979292596359650286939597045138933077984
实际pi:3.141592653589793
答案 3 :(得分:0)
以下是Bailey,Borwein和Plouffe的突破性文章:http://oldweb.cecm.sfu.ca/projects/pihex/p123.pdf
与此同时,发现了更快的公式(遵循相同的原则):http://en.wikipedia.org/wiki/Bellard%27s_formula
答案 4 :(得分:0)
这是一个快速而肮脏的实施Bellard的公式bigPi(200,2000)适用于75ms内超过500个小数位。
public static BigDecimal bigPi(int max,int digits) {
BigDecimal num2power6 = new BigDecimal(64);
BigDecimal sum = new BigDecimal(0);
for(int i = 0; i < max; i++ ) {
BigDecimal tmp;
BigDecimal term ;
BigDecimal divisor;
term = new BigDecimal(-32);
divisor = new BigDecimal(4*i+1);
tmp = term.divide(divisor, digits, BigDecimal.ROUND_FLOOR);
term = new BigDecimal(-1);
divisor = new BigDecimal(4*i+3);
tmp = tmp.add(term.divide(divisor, digits, BigDecimal.ROUND_FLOOR));
term = new BigDecimal(256);
divisor = new BigDecimal(10*i+1);
tmp = tmp.add(term.divide(divisor, digits, BigDecimal.ROUND_FLOOR));
term = new BigDecimal(-64);
divisor = new BigDecimal(10*i+3);
tmp = tmp.add(term.divide(divisor, digits, BigDecimal.ROUND_FLOOR));
term = new BigDecimal(-4);
divisor = new BigDecimal(10*i+5);
tmp = tmp.add(term.divide(divisor, digits, BigDecimal.ROUND_FLOOR));
term = new BigDecimal(-4);
divisor = new BigDecimal(10*i+7);
tmp = tmp.add(term.divide(divisor, digits, BigDecimal.ROUND_FLOOR));
term = new BigDecimal(1);
divisor = new BigDecimal(10*i+9);
tmp = tmp.add(term.divide(divisor, digits, BigDecimal.ROUND_FLOOR));
int s = ((1-((i&1)<<1)));
divisor = new BigDecimal(2);
divisor = divisor.pow(10*i).multiply(new BigDecimal(s));
sum = sum.add(tmp.divide(divisor, digits, BigDecimal.ROUND_FLOOR));
}
sum = sum.divide(num2power6,digits, BigDecimal.ROUND_FLOOR);
return sum;
}