我有以下SQL脚本,该脚本在PIVOT中返回重复值。如何将这些重复的记录合并到一行。
请检查下图显示的结果集。
SELECT *
FROM (SELECT X.stockcode,
X.description,
X.pack,
X.location,
X.lname,
X.qty,
Y.stockcode AS StockCode2,
y.periodname,
Y.months,
Y.saleqty
FROM (SELECT dbo.stock_items.stockcode,
dbo.stock_items.description,
dbo.stock_items.pack,
dbo.stock_loc_info.location,
dbo.stock_locations.lname,
dbo.stock_loc_info.qty
FROM dbo.stock_locations
INNER JOIN dbo.stock_loc_info
ON dbo.stock_locations.locno = dbo.stock_loc_info.location
LEFT OUTER JOIN dbo.stock_items
ON dbo.stock_loc_info.stockcode = dbo.stock_items.stockcode
WHERE ( dbo.stock_items.status = 's' )) AS X
LEFT OUTER JOIN (SELECT dbo.dr_invlines.stockcode,
( 12 + Datepart(month, Getdate()) - Datepart(month, dbo.dr_trans.transdate) ) % 12 + 1 AS Months,
Sum(dbo.dr_invlines.quantity) AS SaleQty,
dbo.period_status.periodname
FROM dbo.dr_trans
INNER JOIN dbo.period_status
ON dbo.dr_trans.period_seqno = dbo.period_status.seqno
LEFT OUTER JOIN dbo.stock_items AS STOCK_ITEMS_1
RIGHT OUTER JOIN dbo.dr_invlines
ON STOCK_ITEMS_1.stockcode = dbo.dr_invlines.stockcode
ON dbo.dr_trans.seqno = dbo.dr_invlines.hdr_seqno
WHERE ( STOCK_ITEMS_1.status = 'S' )
AND ( dbo.dr_trans.transtype IN ( 1, 2 ) )
AND ( dbo.dr_trans.transdate >= Dateadd(m, -6, Getdate()) )
GROUP BY dbo.dr_invlines.stockcode,
Datepart(month, dbo.dr_trans.transdate),
dbo.period_status.periodname) AS Y
ON X.stockcode = Y.stockcode) z
PIVOT (Sum(saleqty) FOR [months] IN ([1],[2],[3],[4],[5],[6])) AS pivoted
答案 0 :(得分:0)
编辑:我想念您的问题的根本原因是,因为包含了periodname列而导致重复。我将其保留为一般显示CTE使用情况的解决方案,因为如果您随后想要对数据透视结果进行额外的过滤/转换,它仍然很有用
一种方法是获取数据透视查询的结果,并通过SELECT DISTINCT查询运行它。
将您的数据透视查询包装为CTE,并使用它为下面的SELECT DISTINCT填充的示例(请注意:未经测试,但在我的SSMS中解析为有效)
WITH PivotResults_CTE (
stockcode,
description,
pack,
location,
lname,
qty,
StockCode2,
periodname,
months,
saleqty
)
AS (
SELECT *
FROM (
SELECT X.stockcode
,X.description
,X.pack
,X.location
,X.lname
,X.qty
,Y.stockcode AS StockCode2
,y.periodname
,Y.months
,Y.saleqty
FROM (
SELECT dbo.stock_items.stockcode
,dbo.stock_items.description
,dbo.stock_items.pack
,dbo.stock_loc_info.location
,dbo.stock_locations.lname
,dbo.stock_loc_info.qty
FROM dbo.stock_locations
INNER JOIN dbo.stock_loc_info ON dbo.stock_locations.locno = dbo.stock_loc_info.location
LEFT OUTER JOIN dbo.stock_items ON dbo.stock_loc_info.stockcode = dbo.stock_items.stockcode
WHERE (dbo.stock_items.STATUS = 's')
) AS X
LEFT OUTER JOIN (
SELECT dbo.dr_invlines.stockcode
,(12 + Datepart(month, Getdate()) - Datepart(month, dbo.dr_trans.transdate)) % 12 + 1 AS Months
,Sum(dbo.dr_invlines.quantity) AS SaleQty
,dbo.period_status.periodname
FROM dbo.dr_trans
INNER JOIN dbo.period_status ON dbo.dr_trans.period_seqno = dbo.period_status.seqno
LEFT OUTER JOIN dbo.stock_items AS STOCK_ITEMS_1
RIGHT OUTER JOIN dbo.dr_invlines ON STOCK_ITEMS_1.stockcode = dbo.dr_invlines.stockcode ON dbo.dr_trans.seqno = dbo.dr_invlines.hdr_seqno WHERE (STOCK_ITEMS_1.STATUS = 'S')
AND (
dbo.dr_trans.transtype IN (
1
,2
)
)
AND (dbo.dr_trans.transdate >= Dateadd(m, - 6, Getdate()))
GROUP BY dbo.dr_invlines.stockcode
,Datepart(month, dbo.dr_trans.transdate)
,dbo.period_status.periodname
) AS Y ON X.stockcode = Y.stockcode
) z
PIVOT(Sum(saleqty) FOR [months] IN (
[1]
,[2]
,[3]
,[4]
,[5]
,[6]
)) AS pivoted
)
SELECT DISTINCT *
FROM
PivotResults_CTE
;
还请注意,上面包含的sql看起来可能与原始sql略有不同,但这仅是因为我通过重新格式化程序来运行它以确保我理解它的结构。
换句话说,您的数据透视查询的基本CTE包装器是:
WITH PivotResults_CTE (
Field1,
Field2,
...
)
AS (
YOUR_PIVOT_QUERY_HERE
)
SELECT DISTINCT *
FROM
PivotResults_CTE
;