SLURM-如何确定作业使用的特定CPU?

时间:2019-04-12 15:19:10

标签: cluster-computing cpu slurm sbatch

我正在开发一种工具,用于监视集群中当前正在运行的作业(19个节点,40个核心)。有什么方法可以确定Slurm队列中的每个作业使用哪个特定的CPU?我正在使用“ pidstat”,“ mpstat”和“ ps -eFj”获取数据,这些数据告诉我特定内核上正在运行哪些进程,但无法将这些进程ID与Slurm使用的Job ID关联。 'scontrol show job'提供了很多信息,但没有特定的cpu分配。有什么办法吗?

在此处收集数据的代码:

#!/usr/bin/env python

import subprocess
import threading
import time

def scan():
  data = [[None, None, None] for i in range(19)]
  def mpstat(node):
    if(node == 1):
      output = subprocess.check_output(['mpstat', '-P', 'ALL', '1', '1'])
    else:
      output = subprocess.check_output(['ssh', 'node' + str(node), 'mpstat', '-P', 'ALL', '1', '1'])
    data[node - 1][0] = output
  def pidstat(node):
    if(node == 1):
      output = subprocess.check_output(['pidstat', '1', '1'])
    else:
      output = subprocess.check_output(['ssh', 'node' + str(node), 'pidstat', '1', '1'])
    data[node - 1][1] = output
  def ps(node):
    if(node == 1):
      output = subprocess.check_output(['ps', '-eFj'])
    else:
      output = subprocess.check_output(['ssh', 'node' + str(node), 'ps', '-eFj'])
    data[node - 1][2] = output
  threads = [[None, None, None] for i in range(19)]
  for node in range(1, 19 + 1):
    threads[node - 1][0] = threading.Thread(target=mpstat, args=(node,))
    threads[node - 1][0].start()
    threads[node - 1][1] = threading.Thread(target=pidstat, args=(node,))
    threads[node - 1][1].start()
    threads[node - 1][2] = threading.Thread(target=ps, args=(node,))
    threads[node - 1][2].start()
  while True:
    alive = [[not t.isAlive() for t in n]  for n in threads]
    alive = [t for n in alive for t in n]
    if(all(alive)):
      break
    time.sleep(1.0)
  return(data)

1 个答案:

答案 0 :(得分:1)

通过使用-d标志,您可以获取每个节点上作业的CPU_ID,如下所示。

$ scontrol show job -d $SLURM_JOBID
JobId=1 JobName=bash
   UserId=USER(UID) GroupId=GROUP(GID) MCS_label=N/A
   Priority=56117 Nice=0 Account=account QOS=interactive
   JobState=RUNNING Reason=None Dependency=(null)
   Requeue=1 Restarts=0 BatchFlag=0 Reboot=0 ExitCode=0:0
   DerivedExitCode=0:0
   RunTime=00:00:10 TimeLimit=02:00:00 TimeMin=N/A
   SubmitTime=2019-04-12T17:34:11 EligibleTime=2019-04-12T17:34:11
   StartTime=2019-04-12T17:34:12 EndTime=2019-04-12T19:34:12 Deadline=N/A
   PreemptTime=None SuspendTime=None SecsPreSuspend=0
   Partition=defq AllocNode:Sid=node2:25638
   ReqNodeList=(null) ExcNodeList=(null)
   NodeList=node1
   BatchHost=node2
   NumNodes=1 NumCPUs=2 NumTasks=1 CPUs/Task=2 ReqB:S:C:T=0:0:*:*
   TRES=cpu=2,mem=17600M,node=1
   Socks/Node=* NtasksPerN:B:S:C=0:0:*:* CoreSpec=*
     Nodes=node1 CPU_IDs=12-13 Mem=17600 GRES_IDX=
   MinCPUsNode=2 MinMemoryCPU=8800M MinTmpDiskNode=0
   Features=(null) DelayBoot=00:00:00
   Gres=(null) Reservation=(null)
   OverSubscribe=OK Contiguous=0 Licenses=(null) Network=(null)
   Command=bash
   WorkDir=/home/USER
   Power=

如果此信息还不够,您可能会发现scontrol pidinfo PID

的输出很有用
$ scontrol pidinfo 43734
Slurm job id 21757758 ends at Fri Apr 12 20:15:49 2019
slurm_get_rem_time is 6647