让初学者Ai从重量和质地上将苹果与橘子区别开来,并且标签上出现语法错误 这是代码:
from sklearn import tree
## In Features 1 = Smooth, 0 = Bumpy
features = [[140, 1], [130, 1], [150, 0], [170, 0]
labels = ["apple", "apple", "orange", "orange"]
clf = tree.DecisionTreeClassifier()
clf = clf.fit(features, labels)
print clf.predict([[150, 0]])
答案 0 :(得分:0)
您缺少]
from sklearn import tree
## In Features 1 = Smooth, 0 = Bumpy
features = [[140, 1], [130, 1], [150, 0], [170, 0]] # missed an ] here
labels = ["apple", "apple", "orange", "orange"]
clf = tree.DecisionTreeClassifier()
clf = clf.fit(features, labels)
print clf.predict([[150, 0]])
答案 1 :(得分:0)
运行Python脚本时遇到什么错误?
例如:
>>> x = [ ["x", y"]
给我:
SyntaxError: EOL while scanning string literal
甚至指向失败的行。您尝试使用Google搜索吗?我觉得您正在尝试学习有关AI的知识,但是用一种新的语言来学习。